In product design, designers often create a multitude of concept sketches as part of the ideation and exploration process. Transforming such sketches to 3D digital models requires special expertise due to a lack of intuitive computer aided design (CAD) tools suitable for rapid modeling. Recent advances in sketch-based user interfaces and immersive environments have introduced novel curve design methods that facilitate the transformation of such sketches into 3D digital models. However, rapid surfacing of such data remains an open challenge. Based on the observation that a sparse network of curves is reasonably sufficient to convey the intended geometric shape, we propose a new method for creating approximate surfaces on curve clouds automatically. A notable property of our method is that it relieves many topological and geometric restrictions of 3D conventional networks such as the curves do not need to be connected to one another or gently drawn. Our method calculates a 3D guidance vector field in the space that the curve cloud appears. This guidance vector field helps drive a deformable closed surface onto the curves. During this deformation, surface smoothness is controlled through a set of surface smoothing and subdivision operations. The resulting surface can be further beautified by the user manually using selective surface modification and fairing operations. We demonstrate the effectiveness of our approach on several case examples. Our studies have shown that the proposed technique can be particularly useful for rapid visualization.

References

References
1.
Igarashi
,
T.
,
Matsuoka
,
S.
, and
Tanaka
,
H.
,
1999
, “
Teddy: A Sketching Interface for 3D Freeform Design
,”
Proceedings of SIGGRAPH 1999
,
ACM
, p.
21
.
2.
Nealen
,
A.
,
Igarashi
,
T.
,
Sorkine
,
O.
, and
Alexa
,
M.
,
2007
, “
Fibermesh: Designing Freeform Surfaces With 3D Curves
,”
ACM Trans. Graph.
,
26
(
3
), p.
41
.10.1145/1276377.1276429
3.
Dekkers
,
E.
,
Kobbelt
,
L.
,
Pawlicki
,
R.
, and
Smith
,
R. C.
,
2009
, “
A Sketching Interface for Feature Curve Recovery of Free-Form Surfaces
,”
2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, SPM’09, ACM
, pp.
235
245
.
4.
Sugihara
,
M.
,
de Groot
,
E.
,
Wyvill
,
B.
, and
Schmidt
,
R.
,
2008
, “
A Sketch-Based Method to Control Deformation in a Skeletal Implicit Surface Modeler
,”
Proceedings of the 5th EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling
,
Citeseer
, pp.
65
72
.
5.
Schkolne
,
S.
,
Pruett
,
M.
, and
Schröder
,
P.
,
2001
. “
Surface Drawing: Creating Organic 3D Shapes With the Hand and Tangible Tools
,”
Proceedings of the SIGCHI conference on Human factors in computing systems, CHI’01, ACM
, pp.
261
268
.
6.
Billinghurst
,
M.
,
Grasset
,
R.
, and
Looser
,
J.
,
2005
. “
Designing Augmented Reality Interfaces
,”
SIGGRAPH Comput. Graph.
,
39
, February, pp.
17
22
.10.1145/1057792.1057803
7.
Singh
,
K.
, and
Eugene
,
F.
,
1998
, “
Wires: A Geometric Deformation Technique
,” pp.
405
414
.
8.
Orzan
,
A.
,
Bousseau
,
A.
,
Winnemöller
,
H.
,
Barla
,
P.
,
Thollot
,
J.
, and
Salesin
,
D.
,
2008
, “
Diffusion Curves: A Vector Representation for Smooth-Shaded Images
,”
ACM Trans. Graph.
,
27
, pp.
92:1
92:8
.10.1145/1360612.1360691
9.
MAYA
,
2007
,
Autodesk
.
10.
MAX
,
D.
,
2007
,
Autodesk
.
11.
Igarashi
,
T.
, and
Hughes
,
J.
,
2003
, “
Smooth Meshes for Sketch-Based Freeform Modeling
,”
ACM Symposium on Interactive 3D Graphi
cs, ACM
, pp.
139
142
.
12.
Schmidt
,
R.
,
Wyvill
,
B.
,
Sousa
,
M. C.
, and
Jorge
,
J. A.
,
2006
, “
Shapeshop: Sketch-Based Solid Modeling With Blobtrees
,”
ACM SIGGRAPH 2006 Co
urses, SIGGRAPH’06, ACM
.
13.
Karpenko
,
O. A.
, and
Hughes
,
J. F.
,
2006
, “
Smoothsketch: 3D Free-Form Shapes From Complex Sketches
,”
ACM Trans. Graph.
,
25
, pp.
589
598
.10.1145/1141911.1141928
14.
Kara
,
L. B.
, and
Shimada
,
K.
,
2007
, “
Sketch-Based 3D-Shape Creation for Industrial Styling Design
,”
IEEE Comput. Graph. Appl.
,
27
(
1
), pp.
60
71
.10.1109/MCG.2007.18
15.
Joshi
,
P.
, and
Séquin
,
C.
,
2007
,
“Energy Minimizers for Curvature-Based Surface Functionals
.”
16.
Botsch
,
M.
, and
Kobbelt
,
L.
,
2004
, “
An Intuitive Framework for Real-Time Freeform Modeling
,”
ACM Trans. Graph.
,
23
, pp.
630
634
.10.1145/1015706.1015772
17.
Gonzalez Castro
,
G.
,
Ugail
,
H.
,
Willis
,
P.
, and
Palmer
,
I.
,
2008
,
“A Survey of Partial Differential Equations in Geometric Design
.”
18.
Zhang
,
J. J.
, and
You
,
L. H.
,
2004
, “
Fast Surface Modelling Using a 6th Order PDE
,”
Comput. Graph. Forum
,
23
(
3
), pp.
311
320
.10.1111/j.1467-8659.2004.00762.x
19.
Barhak
,
J.
, and
Fischer
,
A.
,
2001
, “
Parameterization for Reconstruction of 3D Freeform Objects From Laser-Scanned Data Based on a PDE Method
,”
Springer Berlin/Heidelberg
,
Vis. Comput.
,
17
(
6
), pp.
353
369
.10.1007/s003710100112354
20.
van Overveld
,
K.
, and
Wyvill
,
B.
,
2004
, “
Shrinkwrap: An Efficient Adaptive Algorithm for Triangulating an Iso-Surface
,”
Vis. Comput.
,
20
, pp.
362
379
.10.1007/s00371-002-0197-4
21.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
SIGGRAPH Comput. Graph.
,
21
, pp.
163
169
.10.1145/37402.37422
22.
Xu
,
C.
, and
Prince
,
J.
,
1998
, “
Snakes, Shapes, and Gradient Vector Flow
,”
IEEE Trans. Image Process.
,
7
(
3
), pp.
359
369
.10.1109/83.661186
23.
Rhino3d
,
2012
,
Mcneel
.
24.
Solidworks
,
2012
,
Solidworks Corp
.
25.
Cohen
,
L.
, and
Cohen
,
I.
,
1993
, “
Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
15
(
11
), pp.
1131
1147
.10.1109/34.244675
26.
Cohen
,
L. D.
,
1991
, “
On Active Contour Models and Balloons
,”
CVGIP: Image Underst.
,
53
, pp.
211
218
.10.1016/1049-9660(91)90028-N
27.
Moin
,
P.
,
2001
,
Fundamentals of Engineering Numerical Analysis
,
Cambridge University Press
.
28.
Meyer
,
M.
,
Desbrun
,
M.
,
Schröder
,
P.
, and
Barr
,
A. H.
,
2002
, “
Discrete Differential-Geometry Operators for Triangulated 2-Manifolds
,”
Visualization Math.
,
3
(
7
), pp.
1
26
.
29.
Terzopoulos
,
D.
,
Platt
,
J.
,
Barr
,
A.
, and
Fleischer
,
K.
,
1987
, “
Elastically Deformable Models
,”
SIGGRAPH Comput. Graph.
,
21
, pp.
205
214
.10.1145/37402.37427
30.
Nealen
,
A.
,
Sorkine
,
O.
,
Alexa
,
M.
, and
Cohen-Or
,
D.
,
2007
, “
A Sketch-Based Interface for Detail-Preserving Mesh Editing
.”
31.
Kara
,
L. B.
,
D'Eramo
,
C. M.
, and
Shimada
,
K.
,
2006
, “
Pen-Based Styling Design of 3D Geometry Using Concept Sketches and Template Models
,”
Proceedings of the 2006 ACM symposium on Solid and physical modeling, SPM’06, ACM
, pp.
149
160
.
32.
Yamada
,
A.
,
Furuhata
,
T.
,
Shimada
,
K.
, and
Hou
,
K.
,
1999
, “
A Discrete Spring Model for Generating Fair Curves and Surfaces
,”
Pacific Conference on Computer Graphics and Applications
, p.
270
.
33.
Loop
,
C.
,
1987
, “
Smooth Subdivision Surfaces Based on Triangles
.”
34.
Bae
,
S.-H.
,
Balakrishnan
,
R.
, and
Singh
,
K.
,
2008
, “
Ilovesketch: As-Natural-As-Possible Sketching System for Creating 3D Curve Models
,”
Proceedings of the 21st annual ACM symposium on User interface software and technology, UIST'08, ACM
, pp.
151
160
.
You do not currently have access to this content.