B-spline surfaces are widely used in engineering practices as a flexible and efficient mathematical model for product design, analysis, and assessment. In this paper, we propose a new sequential B-spline surface construction procedure using multiresolution measurements. At each iterative step of the proposed procedure, we first update knots vectors based on bias and variance decomposition of the fitting error and then incorporate new data into the current surface approximation to fit the control points using Kalman filtering technique. The asymptotical convergence property of the proposed procedure is proved under the framework of sieves method. Using numerical case studies, the effectiveness of the method under finite sample is tested and demonstrated.

References

References
1.
Tiller
,
W.
, and
Piegel
,
L.
, 1995,
The Nurbs Book
,
Springer-Verlag
,
New York
.
2.
De Boor
,
C.
, 1978,
A Practical Guide to Spline
,
Springer-Verlag
,
New York
.
3.
Ma
,
W.
, and
Kruth
,
J. P.
, 1995, “
Parameterization of Randomly Measured Points for Least Square Fitting of B-Spline Curves and Surfaces
,”
Comput.-Aided Des.
,
9
(
27
), pp.
663
675
.
4.
Ma
,
W.
, and
Kruth
,
J. P.
, 1998, “
NURBS Curve and Surface Fitting for Reverse Engineering
,”
Int. J. Adv . Manuf. Technol.
,
14
(
12
), pp.
918
927
.
5.
Forsey
,
D. R.
, and
Bartels
,
R. H.
, 1988, “
Hierachical B-Spline Refinement
,”
Comput. Graphics
,
22
(
4
), pp.
205
212
.
6.
Piegl
,
L.
, 1989, “
Modifying the Shape of Rational B-Splines. Part 2: Surfaces
,”
Comput.-Aided Des.
,
21
(
9
), pp.
538
546
.
7.
Sarkar
,
B.
, and
Menq
,
C.
, 1991, “
Parameter Optimization in Approximating Curves and Surfaces to Measurement Data
,”
Comput. Aided Geom. Des.
,
8
, pp.
267
290
.
8.
Greiner
,
G.
, and
Hormann
,
K.
, 1996, “
Interpolating and Approximating Scattered 3D-Data With Hierarchical Tensor Product B-Splines
,”
Proceedings of Chamonix
, pp.
1
3
.
9.
Chen
,
U.
,
Beier
,
K.-P.
, and
Papageorgiou
,
D.
, 1997, “
Direct Highlight Line Modification on NURBS Surfaces
,”
Comput.-Aided Des.
,
14
, pp.
583
601
.
10.
Lee
,
S.
,
Wolberg
,
G.
, and
Shin
,
S. Y.
, 1997, “
Scattered Data Interpolation With Multilevel B-Splines
,”
IEEE Trans. Vis. Comput. Graph.
,
3
(
3
), pp.
228
244
.
11.
Ma
,
W.
, and
He
,
P.
, 1998, “
B-Spline Surface Local Updating With Unorganized Points
,”
Comput.-Aided Des.
,
30
(
11
), pp.
853
862
.
12.
Weiss
,
V.
,
Andor
,
L.
,
Renner
,
G.
, and
Varady
,
T.
, 2002, “
Advance Surface Fitting Techniques
,”
Comput. Aided Geom. Des.
,
19
, pp.
19
42
.
13.
Huang
,
Y.
, and
Qian
,
X.
, 2007, “
Dynamic B-Spline Surface Reconstruction: Closing the Sensing and Modeling Loop in 3D Digitization
,”
Comput.-Aided Des.
,
39
, pp.
987
1002
.
14.
Huang
,
Y.
,
Qian
,
X.
, and
Chen
,
S.
, 2009, “
Multi-Sensor Calibration Through Iterative Registration and Fusion
,”
Comput.-Aided Des.
,
41
(
4
), pp.
240
255
.
15.
Grenander
,
U.
, 1981,
Abstract Inference
,
Springer
,
New York
.
16.
Geman
,
S.
,
Bienenstock
,
E.
, and
Doursat
,
R.
, 1992, “
Neural Networks and the Bias-Variance Dilemma
,”
Neural Comput.
,
4
, pp.
1
58
.
17.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J. H.
, 2003,
The Elements of Statistical Learning
,
Springer
,
New York
.
18.
De Boor
,
C.
, 1976, “
A Bound on the L-Norm of L2-Approximation by Splines in Terms of a Global Mesh Ratio
,”
Math. Comput.
,
30
(
136
), pp.
765
771
.
19.
Pleniak
,
W.
, 2009, “
Multivariate Jackson Inequality
,”
J. Comput. Appl. Math.
,
233
, pp.
815
820
.
20.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer
,
New York
.
21.
Kohler
,
M.
, 1999, “
Universally Consistent Regression Function Estimation Using Hierarchial B-Splines
,”
J. Multivariate Anal.
,
68
, pp.
138
164
.
You do not currently have access to this content.