We describe a graphics processing unit (GPU)-based computational platform for six-dimensional configuration mapping, which is the description of the configuration space of rigid motions in terms of collision and contact constraints. The platform supports a wide range of computations in design and manufacturing, including three- and six-dimensional configuration space obstacle computations, Minkowski sums and differences, packaging problems, and sweep computations. We demonstrate dramatic performance improvements in the special case of configuration space operations that determine interference-free or containment-preserving configurations between moving solids. Our approach treats such operations as convolutions in the six-dimensional configuration space that are efficiently computed using the fast Fourier transform (FFT). The inherent parallelism of FFT algorithms facilitates a straightforward implementation of convolution on GPUs with existing and freely available libraries, making all such configuration space computations practical, and often interactive.

References

References
1.
Latombe
,
J. C.
, 1991,
Robot Motion Planning
,
Kluwer Academic Publishers
,
Norwell, Massachusetts
.
2.
Lozano-Perez
,
T.
, 1983, “
Spatial Planning: A Configuration Space Approach
,”
IEEE Trans. Comput.
,
100
(
32
), pp.
108
120
.
3.
Wise
,
K. D.
, and
Bowyer
,
A.
, 2000, “
A Survey of Global Configuration-Space Mapping Techniques for a Single Robot in a Static Environment
,”
Int. J. Robot. Res.
,
19
(
8
), pp.
762
779
.
4.
Brost
,
R. C.
, and
Goldberg
,
K. Y.
, 1996, “
A Complete Algorithm for Designing Planar Fixtures Using Modular Components
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
31
46
.
5.
McCarthy
,
J. M.
, and
Joskowicz
,
L.
, 2001, “
Kinematic Synthesis
,”
Formal Engineering Design Synthesis
,
Cambridge University Press
,
New York
, p.
321
.
6.
Ilies
,
H. T.
, and
Shapiro
,
V.
, 1999, “
Dual of Sweep
,”
Comput.-Aided Des.
,
31
(
3
), pp.
185
201
.
7.
Middleditch
,
A. E.
, 1988, “
Application of Vector Sum Operator
,”
Comput.-Aided Des.
,
20
(
4
), pp.
183
188
.
8.
Boissonnat
,
J. D.
,
De Lange
,
E.
, and
Teillaud
,
M.
, 1997, “
Minkowski Operations for Satellite Antenna Layout
,”
Proceedings of the Thirteenth Annual Symposium on Computational Geometry
,
ACM
,
New York
, pp.
67
76
.
9.
Hartquist
,
E. E.
,
Menon
,
J. P.
,
Suresh
,
K.
,
Voelcker
,
H. B.
, and
Zagajac
,
J.
, 1999, “
A Computing Strategy for Applications Involving Offsets, Sweeps, and Minkowski Operations
,”
Comput.-Aided Des.
,
31
(
3
), pp.
175
183
.
10.
Li
,
W.
, and
McMains
,
S.
, 2010, “
A GPU-Based Voxelization Approach to 3D Minkowski Sum Computation
,”
Proceedings of the 14th ACM Symposium on Solid and Physical Modeling
,
ACM
, pp.
31
40
.
11.
Serra
,
J.
, 1983,
Image Analysis and Mathematical Morphology
,
Academic Press, Inc.
,
Orlando, FL.
12.
Requicha
,
A. A. G.
, 1980, “
Representations for Rigid Solids: Theory, Methods, and Systems
,”
ACM Comput. Surv.
,
12
(
4
), pp.
437
464
.
13.
Martin
,
R. R.
, and
Stephenson
,
P. C.
, 1990, “
Sweeping of Three-Dimensional Objects
,”
Comput.-Aided Des.
,
22
(
4
), pp.
223
234
.
14.
Merlet
,
J. P.
, 1999, “
Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison Between Different Geometries
,”
Int. J. Robot. Res.
,
18
(
9
), pp.
902
916
.
15.
Tsai
,
Y. C.
, and
Soni
,
A. H.
, 1983, “
An Algorithm for the Workspace of a General n-R Robot
,”
ASME J. Mech. Des.
,
105
, pp.
52
57
.
16.
Lysenko
,
M.
,
Nelaturi
,
S.
, and
Shapiro
,
V.
, 2010, “
Group Morphology With Convolution Algebras
,”
ACM Symposium on Solid and Physical Modeling 2010
.
17.
Nelaturi
,
S.
, and
Shapiro
,
V.
, 2011, “
Configuration Products and Quotients in Geometric Modeling
,”
Comput.-Aided Des.
,
43
, pp.
781
794
.
18.
Yershova
,
A.
,
Jain
,
S.
,
LaValle
,
S. M.
, and
Mitchell
,
J. C.
, 2010, “
Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration
,”
Int. J. Robot. Res.
,
29
(
7
), pp.
801
812
.
19.
Caine
,
M.
, 1994, “
The Design of Shape Interactions Using Motion Constraints
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
, pp.
366
371
.
20.
Canny
,
J.
, 1988,
The Complexity of Robot Motion Planning ACM Doctoral Dissertation Awards
,
MIT Press
,
Cambridge, MA.
21.
Donald
,
B. R.
, 1987, “
A Search Algorithm for Motion Planning With Six Degrees of Freedom
,”
Artif. Intell.
,
31
(
3
), pp.
295
353
.
22.
Sacks
,
E.
, and
Bajaj
,
C.
, 1998, “
Sliced Configuration Spaces for Curved Planar Bodies
,”
Int. J. Robot. Res.
,
17
(
6
), pp.
639
651
.
23.
Lien
,
J. M.
, 2008, “
Covering Minkowski Sum Boundary Using Points With Applications
,”
Comput. Aided Geom. Des.
,
25
(
8
), pp.
652
666
.
24.
Varadhan
,
G.
, and
Manocha
,
D.
, 2006, “
Accurate Minkowski Sum Approximation of Polyhedral Models
,”
Graphical Models
,
68
(
4
), pp.
343
355
.
25.
Schapira
,
P.
, 1991, “
Operations on Constructible Functions
,”
J. Pure Appl. Algebra
,
72
(
1
), pp.
83
93
.
26.
Kavraki
,
L. E.
, 1995, “
Computation of Configuration-Space Obstacles Using the Fast Fourier Transform
,”
IEEE Trans. Rob. Autom.
,
11
(
3
), pp.
408
413
.
27.
Muhlthaler
,
H.
, and
Pottmann
,
H.
, 2003, “
Computing the Minkowski Sum of Ruled Surfaces
,”
Graphical Models
,
65
(
6
), pp.
369
384
.
28.
Muradyan
,
R. M.
, 1981, “
On Discrete Subgroups of the Three-Dimensional Rotation Group
,”
Theor. Math. Phys.
,
46
(
3
), pp.
219
227
.
29.
Chirikjian
,
G. S.
,
Kyatkin
,
A. B.
, and
Buckingham
,
A. C.
, 2001, “
Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups
,”
ASME Appl. Mech. Rev.
,
54
.
30.
Roerdink
,
J. B. T. M.
, 2000, “
Group Morphology
,”
Pattern Recogn.
,
33
(
6
), pp.
877
895
.
31.
Mitchell
,
J. C.
, 2008, “
Sampling Rotation Groups by Successive Orthogonal Images
,”
SIAM J. Sci. Comput. (USA)
,
30
, pp.
525
547
.
32.
Armstrong
,
M. A.
, 1983,
Basic Topology
,
Springer
,
New York
.
33.
Burns
,
K. H.
, and
Gidea
,
M.
, 2005,
Differential Geometry and Topology: With a View to Dynamical Systems
,
CRC Press
,
Boca Raton, Florida
.
34.
Hatcher
,
A.
, 2002,
Algebraic Topology
,
Cambridge University Press
,
Cambridge
.
35.
Frigo
,
M.
, and
Johnson
,
S. G.
, 2005, “
The Design and Implementation of FFTW3
,”
Proc. IEEE
,
93
(
2
), pp.
216
231
.
36.
Madisetti
,
V.
, and
Williams
,
D. B.
, 1998,
The Digital Signal Processing Handbook
,
CRC
,
Boca Raton, Florida
.
37.
NVIDIA Corporation, 2012, CUFFT Library, Technical Report. Report number PG-05327-040_v01
38.
Klöckner
,
A.
,
Pinto
,
N.
,
Lee
,
Y.
,
Catanzaro
,
B.
,
Ivanov
,
P.
, and
Fasih
,
A.
, 2009, “
PyCUDA: GPU Run-Time Code Generation for High-Performance Computing
,” Arxiv preprint arXiv, p.
911
.
39.
Min
,
P.
, 2005, BINVOX, “
A 3D Mesh Voxelizer
.”
40.
Dong
,
Z.
,
Chen
,
W.
,
Bao
,
H.
,
Zhang
,
H.
, and
Peng
,
Q.
, 2004, “
Real-Time Voxelization for Complex Polygonal Models
,”
Proceedings of the 12th Pacific Conference on Computer Graphics and Applications (PG 2004)
, pp.
43
50
.
41.
Eisemann
,
E.
, and
Décoret
,
X.
, 2008, “
Single-Pass GPU Solid Voxelization for Real-Time Applications
,”
Proceedings of Graphics Interface 2008
,
Canadian Information Processing Society
, pp.
73
80
.
42.
Nukada
,
A.
,
Ogata
,
Y.
,
Endo
,
T.
, and
Matsuoka
,
S.
, 2009, “
Bandwidth Intensive 3-D FFT Kernel for GPUs Using CUDA
,”
International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2008), IEEE
, pp.
1
11
.
43.
Chen
,
B.
, and
Kaufman
,
A.
, 2000, “
3D Volume Rotation Using Shear Transformations
,”
Graphical Models
,
62
(
4
), pp.
308
322
.
44.
Cox
,
R. W.
, and
Tong
,
R.
, 2002, “
Two- and Three-Dimensional Image Rotation Using the FFT
,”
IEEE Trans. Image Process.
,
8
(
9
), pp.
1297
1299
.
45.
Toffoli
,
T.
, and
Quick
,
J.
, 1997, “
Three-Dimensional Rotations by Three Shears
,”
Graph. Models Image Process.
,
59
(
2
), pp.
89
95
.
46.
Welling
,
J. S.
,
Eddy
,
W. F.
, and
Young
,
T. K.
, 2006, “
Rotation of 3D Volumes by Fourier-Interpolated Shears
,”
Graphical Models
,
68
(
4
), pp.
356
370
.
47.
Ruijters
,
D.
, and
Thévenaz
,
P.
, 2012, “
GPU Prefilter for Accurate Cubic B-Spline Interpolation
,”
Comput. J.
,
55
, pp.
15
20
.
You do not currently have access to this content.