The cognitive challenges in the design of complex engineered systems include the scale and scope of decision problems, nonlinearity of the trade space, subjectivity of the problem formulation, and the need for rapid decision making. These challenges have motivated an active area of research in design decision-support methods and the development of commercial and openly available design frameworks. Although these frameworks are extremely capable, most are limiting as a basis for research relating to design decision support because they offer little user flexibility for incorporating and evaluating new features or techniques. This paper describes Rave (www.rave.gatech.edu), a computational framework designed specifically as a research platform for design decision-support methods. Rave has been structured to be flexible and adaptable, handle data with systematic data structures and descriptive metadata, facilitate a wide spectrum of visualization types, provide features to enable user interactivity and linking of graphics, and incorporate surrogate modeling and optimization as enabling capabilities. This framework is envisioned to provide the research and industrial communities an easily expandable and customizable baseline capability to facilitate investigation of further design decision-support advancements.

References

References
1.
Hazelrigg
,
G. A.
, 1998, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
, pp.
653
658
.
2.
Hayes
,
C. C.
, and
Farnaz
,
A.
, 2008, “
Design Decision Making: Adapting Mathematical Paradigms to Fit Designers’ Actual Needs
,”
Proceedings of the Human Factors and Ergonomics Society 52nd Annual Meeting
.
3.
Simon
,
H. A.
, 1955, “
A Behavioral Model of Rational Choice
,”
Q. J. Econ.
,
69
, pp.
99
118
.
4.
Giesing
,
J. P.
, and
Barthelemy
,
J. -F. M. M.
, 1998, “
A Summary of Industry MDO Applications and Needs
,”
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
.
5.
Kim
,
H.
,
Malone
,
B.
, and
Sobieszczanski-Sobieski
,
J.
, 2004, “
A Distributed, Parallel, and Collaborative Environment for Design of Complex Systems
,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
.
6.
Clarich
,
A.
,
Geremia
,
P.
,
Parashar
,
S.
, and
Russo
,
R.
, 2010, “
Use of Multivariate-Data-Analysis Techniques in modeFRONTIER for Efficient Optimization and Decision Making
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
.
7.
Tiwari
,
S.
,
Dong
,
H.
,
Watson
,
B. C.
, and
Leiva
,
J. P.
, 2010, “
VisualDOC: New Capabilities for Concurrent and Integrated Simulation Design
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
.
8.
Moore
,
K. T.
,
Naylor
,
B. A.
, and
Gray
,
J. S.
, 2008, “
The Development of an Open Source Framework for Multidisciplinary Analysis and Optimization
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
.
9.
Stump
,
G.
,
Lego
,
S.
, and
Yukish
,
M.
, 2009, “
Visual Steering Commands for Trade Space Exploration: User-Guided Sampling With Example
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
, p.
044501
.
10.
C. R.
Johnson
,
R.
Moorhead
,
T.
Munzner
,
H.
Pfister
,
P.
Rheingans
, and
T. S.
Yoo
, (Eds.), 2006, “
NIH/NSF Visualization Research Challenges Report
,” IEEE Press, ISBN 0-7695-2733-7.
11.
Cook
,
K.
, and
Thomas
,
J.
, 2005,
Illuminating the Path: The Research and Development Agenda for Visual Analytics
,
IEEE Computer Society
,
Los Alamitos, CA
.
12.
Ward
,
M.
,
Grinstein
,
G.
, and
Keim
,
D.
, 2010,
Interactive Data Visualization: Foundations, Techniques and Applications
,
A K Peters, Ltd.
,
Natick, MA
.
13.
Simpson
,
T. W.
, and
Martins
,
J. R. R. A.
, 2011, “
Multidisciplinary Design Optimization for Complex Engineered Systems: Report From a National Science Foundation Workshop
,”
ASME J. Mech. Des.
,
133
, p.
101002
.
14.
Daskilewicz
,
M. J.
, and
German
,
B. J.
, 2010, “
RAVE: A Graphically Driven Framework for Agile Design-Decision Support
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
.
15.
Daskilewicz
,
M. J.
, 2011, “
Rave Homepage
.” http://www.rave.gatech.eduhttp://www.rave.gatech.edu
16.
Amar
,
R.
, and
Stasko
,
J.
, 2005, “
Knowledge Precepts for Design and Evaluation of Information Visualizations
,”
IEEE Trans. Vis. Comput. Graph.
,
11
(
4
), pp.
432
442
.
17.
Tory
,
M.
, and
Möller
,
T.
, 2002, “
A Model-Based Visualization Taxonomy
,” Computing Science Department, Simon Fraser University, Technical Report No. TR 2002-06.
18.
Tory
,
M.
, and
Möller
,
T.
, 2004, “
Rethinking Visualization: A High Level Taxonomy
,”
Proceedings IEEE Symposium on Information Visualization
.
19.
Daskilewicz
,
M. J.
, and
German
,
B. J.
, 2009, “
Aspects of Effective Visualization of Multidimensional Design Spaces
,”
9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO)
.
20.
Hwang
,
C. L.
, and
Yoon
,
K.
, 1981,
Multiple Attribute Decision Making: Methods & Applications
(Lecture Notes in Economics and Mathematical Systems)
,
Springer-Verlag, Berlin
.
21.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
, 2005, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
, pp.
1
28
.
22.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
, pp.
370
380
.
23.
Simpson
,
T. W.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F. A. C.
, 2008, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come—Or Not
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
.
24.
Wilson
,
B.
,
Cappelleri
,
D. J.
,
Simpson
,
T. W.
, and
Frecker
,
M. J.
, 2001, “
Efficient Pareto Frontier Exploration Using Surrogate Approximations
,”
Optim. Eng.
,
2
, pp.
31
50
.
25.
Kodiyalam
,
S.
,
Yang
,
R. J.
, and
Gu
,
L.
, 2004, “
High-Performance Computing and Surrogate Modeling for Rapid Visualization With Multidisciplinary Optimization
,”
AIAA J.
,
42
(
11
), pp.
2347
2354
.
26.
Ligetti
,
C. B.
, and
Simpson
,
T. W.
, 2005, “
Metamodel-Driven Design Optimization Using Integrative Graphical Design Interfaces: Results From a Job-Shop Manufacturing Simulation Experiment
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
1
), pp.
8
17
.
27.
Booker
,
A.
,
Dennis
,
J.
, Jr.
,
Frank
,
P.
,
Serafini
,
D.
,
Torczon
,
V.
, and
Trosset
,
M.
, 1999, “
Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Optim.
,
17
(
1
), pp.
1
13
.
28.
Becker
,
R. A.
, and
Cleveland
,
W. S.
, 1987, “
Brushing Scatterplots
,”
Technometrics
,
29
(
2
), pp.
127
142
.
29.
Shneiderman
,
B.
, 1996, “
The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations
,”
Proceedings of the IEEE Symposium on Visual Languages
, pp.
336
343
.
30.
Winer
,
E.
, and
Bloebaum
,
C.
, 2002, “
Development of Visual Design Steering as an Aid in Large-Scale Multidisciplinary Design Optimization. Part I: Method Development
,”
Struct. Multidiscip. Optim.
,
23
(
6
), pp.
412
424
.
31.
Winer
,
E.
, and
Bloebaum
,
C.
, 2002, “
Development of Visual Design Steering as an Aid in Large-Scale Multidisciplinary Design Optimization. Part II: Method Validation
,”
Struct. Multidiscip. Optim.
,
23
(
6
), pp.
425
435
.
You do not currently have access to this content.