We consider the computational problem of finding the point in 3D-space on a transformed surface corresponding to a coordinate pair given in a perspective mapping. The transformation is a rigid body transformation that is assumed to be small and vary. Initially, it is unknown but when it becomes known, the output must be accurate and quickly returned. Therefore, the computations are adapted for those conditions. Preprocessed shape information about the surface is computed in a perspective mapping where the surface is in an original position. We are discussing algorithms for solving the considered problem.

References

References
1.
Bergström
,
P.
,
Rosendahl
,
S.
,
Gren
,
P.
, and
Sjödahl
,
M.
, 2011, “
Shape Verification Using Dual-Wavelength Holographic Interferometry
,”
Opt. Eng.
,
50
(
10
), p.
101503
.
2.
Rosendahl
,
S.
,
Bergström
,
P.
,
Gren
,
P.
, and
Sjödahl
,
M.
, 2011, “
Dual-Wavelength Holographic Shape Measurement With Iterative Phase Unwrapping
,”
P. H.
Lehmann
,
W.
Osten
, and
K.
Gastinger
, eds.,
SPIE
,
Munich, Germany
, Vol.
8082
, p.
80820B
.
3.
Rosendahl
,
S.
,
Hällstig
,
E.
,
Gren
,
P.
, and
Sjödahl
,
M.
, 2010, “
Shape Measurement With One Fringe Pattern Recording Including a Digital Master
,”
Appl. Opt.
,
49
(
14
), pp.
2622
2629
.
4.
Reich
,
C.
,
Ritter
,
R.
, and
Thesing
,
J.
, 2000, “
3-D Shape Measurement of Complex Objects by Combining Photogrammetry and Fringe Projection
,”
Opt. Eng.
,
39
(
1
), pp.
224
231
.
5.
Kümstedt
,
P.
,
Munckelt
,
C.
,
Heinze
,
M.
,
Bräuer-Burchardt
,
C.
, and
Notni
,
G.
, 2007, “
3D Shape Measurement With Phase Correlation Based Fringe Projection
,”
Optical Measurement Systems for Industrial Inspection V
,
W.
Osten
,
C.
Gorecki
, and
E. L.
Novak
, eds.,
SPIE
,
Munich, Germany
, Vol.
6616
, pp.
1
9
.
6.
Mann
,
C. J.
,
Bingham
,
P. R.
,
Paquit
,
V. C.
, and
Tobin
,
K. W.
, 2008, “
Quantitative Phase Imaging by Three-Wavelength Digital Holography
,”
Opt. Express
,
16
(
13
), pp.
9753
9764
.
7.
Fu
,
Y.
,
Pedrini
,
G.
,
Hennelly
,
B. M.
,
Groves
,
R. M.
, and
Osten
,
W.
, 2009, “
Dual-Wavelength Image-Plane Digital Holography for Dynamic Measurement
,”
Opt. Lasers Eng.
,
47
(
5
), pp.
552
557
.
8.
Wada
,
A.
,
Kato
,
M.
, and
Ishii
,
Y.
, 2008, “
Large Step-Height Measurements Using Multiple-Wavelength Holographic Interferometry With Tunable Laser Diodes
,”
J. Opt. Soc. Am. A
,
25
(
12
), pp.
3013
3020
.
9.
Dimas
,
E.
, and
Briassoulis
,
D.
, 1999, “
3D Geometric Modelling Based on NURBS: A Review
,”
Adv. Eng. Software
,
30
(
9–11
), pp.
741
751
.
10.
Farouki
,
R. T.
, and
Hinds
,
J. K.
, 1985, “
A Hierarchy of Geometric Forms
,”
IEEE Comput. Graphics Appl.
,
5
(
5
), pp.
51
78
.
11.
Piegl
,
L.
, and
Tiller
,
W.
, 1997,
The NURBS Book
,
2nd ed.
,
Springer-Verlag
,
New York, NY
.
12.
Risler
,
J. J.
, 1992,
Mathematical Methods for CAD
,
Cambridge University Press
,
New York, NY
.
13.
Hartley
,
R.
, and
Zisserman
,
A.
, 2004,
Multiple View Geometry in Computer Vision
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
14.
Feldmar
,
J.
,
Ayache
,
N.
, and
Betting
,
F.
, 1997, “
3D-2D Projective Registration of Free-Form Curves and Surfaces
,”
Comput. Vis. Image Underst.
,
65
, pp.
403
424
.
15.
Ababsa
,
F.
,
Roussel
,
D.
,
Mallem
,
M.
, and
Didier
,
J.-Y.
, 2002, “
2D/3D Automatic Matching Technique for 3D Recovering of Free Form Objects
,”
Proceedings of the 16th International Conference on Pattern Recognition
, Vol.
2
, pp.
430
433
.
16.
Criminisi
,
A.
,
Reid
,
I.
, and
Zisserman
,
A.
, 2000, “
Single View Metrology
,”
Int. J. Comput. Vis.
,
40
(
2
), pp.
123
148
.
17.
Wang
,
G.
,
Hu
,
Z.
,
Wu
,
F.
, and
Tsui
,
H.-T.
, 2005, “
Single View Metrology From Scene Constraints
,”
Image Vis. Comput.
,
23
(
9
), pp.
831
840
.
18.
Hu
,
Z.
, and
Tan
,
Z.
, 2007, “
Depth Recovery and Affine Reconstruction Under Camera Pure Translation
,”
Pattern Recogn.
,
40
(
10
), pp.
2826
2836
.
19.
Moons
,
T.
,
Van Gool
,
L.
,
Proesmans
,
M.
, and
Pauwels
,
E.
, 1996, “
Affine Reconstruction From Perspective Image Pairs With a Relative Object-Camera Translation in Between
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
18
(
1
), pp.
77
83
.
20.
Efremov
,
A.
,
Havran
,
V.
, and
Seidel
,
H.-P.
, 2005, “
Robust and Numerically Stable Bézier Clipping Method for Ray Tracing NURBS Surfaces
,”
Proceedings of the 21st Spring Conference on Computer Graphics, SCCG ’05
,
ACM
, pp.
127
135
.
21.
Nishita
,
T.
,
Sederberg
,
T. W.
, and
Kakimoto
,
M.
, 1990, “
Ray Tracing Trimmed Rational Surface Patches
,”
SIGGRAPH Computer Graphics
, Vol.
24
, pp.
337
345
.
22.
Pabst
,
H.-F.
,
Springer
,
J.
,
Schollmeyer
,
A.
,
Lenhardt
,
R.
,
Lessig
,
C.
, and
Froehlich
,
B.
, 2006, “
Ray Casting of Trimmed NURBS Surfaces on the GPU
,”
IEEE Symposium on Interactive Ray Tracing 2006
, pp.
151
160
.
23.
Purcell
,
T. J.
,
Buck
,
I.
,
Mark
,
W. R.
, and
Hanrahan
,
P.
, 2002, “
Ray Tracing on Programmable Graphics Hardware
,”
ACM Trans. Graphics
,
21
(
3
), pp.
703
712
. (Proceedings of ACM SIGGRAPH 2002).
24.
Krishnamurthy
,
A.
,
Khardekar
,
R.
,
McMains
,
S.
,
Haller
,
K.
, and
Elber
,
G.
, 2009, “
Performing Efficient NURBS Modeling Operations on the GPU
,”
IEEE Trans. Vis. Comput. Graph.
,
15
(
4
), pp.
530
543
.
25.
Lo
,
S. H.
, 1988, “
Perspective Projection of Non-Convex Polyhedra
,”
Int. J. Numer. Methods Eng.
,
26
(
7
), pp.
1485
1506
.
26.
Cerrolaza
,
M.
, and
Aparicio
,
N.
, 1995, “
A Simple Hidden Surface Algorithm for Finite and Boundary Elements Postprocessing
,”
Eng. Anal. Boundary Elem.
,
15
(
1
), pp.
51
66
.
27.
Wang
,
S.-W.
,
Shih
,
Z.-C.
, and
Chang
,
R.-C.
, 2001, “
An Efficient and Stable Ray Tracing Algorithm for Parametric Surfaces
,”
J. Inf. Sci. Eng.
,
18
, pp.
541
561
, available at http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.101.5505http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.101.5505
28.
Qin
,
K.
,
Gong
,
M.
,
Guan
,
Y.
, and
Wang
,
W.
, 1997, “
A New Method for Speeding Up Ray Tracing NURBS Surfaces
,”
Comput. Graphics
,
21
(
5
), pp.
577
586
.
29.
Piegl
,
L. A.
, and
Tiller
,
W.
, 1998, “
Geometry-Based Triangulation of Trimmed NURBS Surfaces
,”
Comput.-Aided Des.
,
30
(
1
), pp.
11
18
.
30.
Cho
,
W.
,
Patrikalakis
,
N. M.
, and
Peraire
,
J.
, 1998, “
Approximate Development of Trimmed Patches for Surface Tessellation
,”
Comput.-Aided Des.
,
30
(
14
), pp.
1077
1087
.
31.
Cripps
,
R.
, and
Parwana
,
S.
, 2011, “
A Robust Efficient Tracing Scheme for Triangulating Trimmed Parametric Surfaces
,”
Comput.-Aided Des.
,
43
(
1
), pp.
12
20
.
32.
NIST, 2008, The Initial Graphics Exchange Specification (IGES); IGES version 5.3. Gaithersburg, MD, 5. http://ts.nist.gov/standards/iges/about.cfmhttp://ts.nist.gov/standards/iges/about.cfm
This content is only available via PDF.
You do not currently have access to this content.