In most variation simulations, i.e., simulations of geometric variations in assemblies, the influence from heating and cooling processes, generated when two parts are welded together, is not taken into consideration. In most welding simulations, the influence from geometric tolerances on parts is not taken into consideration, i.e., the simulations are based on nominal parts. In this paper, these two aspects, both crucial for predicting the final outcome of an assembly, are combined. Monte Carlo simulation is used to generate a number of different non-nominal parts in a software for variation simulation. The translation and rotation matrices, representing the deviations from the nominal geometry due to positioning error, are exported to a software for welding simulation, where the effects from welding are applied. The final results are then analyzed with respect to both deviation and variation. The method is applied on a simple case, a T-weld joint, with available measurements of residual stresses and deformations. The effect of the different sources of deviation on the final outcome is analyzed and the difference between welding simulations applied to nominal parts and to disturbed (non-nominal) parts is investigated. The study shows that, in order to achieve realistic results, variation simulations should be combined with welding simulations. It does also show that welding simulations should be applied to a set of non-nominal parts since the difference between deviation of a nominal part and deviation of a non-nominal part due to influence of welding can be quite large.

References

References
1.
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindkvist
,
L.
, 2010,
“Strategies for Optimization of Spot Welding Sequence With Respect to Geometrical Variation in Sheet Metal Assemblies,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition.
2.
Lee
,
D.
,
Kwon
,
K. E.
,
Lee
,
J.
,
Jee
,
H.
,
Yim
,
H.
,
Cho
,
S. W.
,
Shin
,
J.-G.
, and
Lee
,
G.
, 2009, “
Tolerance Analysis Considering Weld Distortion by Use of Pregenerated Database
,”
ASME J. Manuf. Sci. Eng.
,
131
, pp.
041012.1
041012.6
.
3.
Xiong
,
C.
,
Rong
,
Y.
,
Koganti
,
R.
,
Zaluzec
,
M.
, and
Wang
,
N.
, 2002, “
Geometric Variation Prediction in Automotive Assembling
,”
Assem. Autom.
,
22
(
3
), pp.
260
269
.
4.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
, 2000, “
Error Compensation in Machine Tools—A Review, Part II: Thermal Errors
,”
Int. J. Mach. Tools Manuf.
,
40
, pp.
1257
1284
.
5.
Yang
,
H.
, and
Ni
,
J.
, 2003, “
Dynamic Modeling for Machine Tool Thermal Error Compensation
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
245
254
.
6.
Zhu
,
J.
,
Ni
,
J.
, and
Shih
,
A. J.
, 2008, “
Robust Machine Tool Thermal Error Modeling Through Thermal Mode Concept
,”
ASME J. Manuf. Sci. Eng.
,
130
, pp.
061006.1
061006.9
.
7.
Kang
,
Y.
,
Chang
,
C.-W.
,
Huang
,
Y.
,
Hsu
,
C.-L.
, and
Nieh
,
I.-F.
, 2007, “
Modification of a Neural Network Utilizing Hybrid Filters for the Compensation of Thermal Deformation in Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
376
387
.
8.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Carlson
,
J.
, 2006, “
Virtual Geometry Assurance for Effective Product Realization
,”
1st Nordic Conference on Product Lifecycle Management—NordPLM’06
,
Göteborg
,
Sweden
.
9.
Gao
,
J.
,
Chase
,
K.
, and
Magleby
,
S.
, 2009, “
Comparision of Assembly Tolerance Analysis by the Direct Linearization and Modified Monte Carlo Simulation Methods
,”
Proceedings of ASME Design Engineering Technical Conference
,
Boston
,
USA
.
10.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J.
, and
Davidson
,
J.
, 2005, ”
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
247
256
.
11.
Söderberg
,
R.
, and
Lindkvist
,
L.
, 1999, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Des.
,
10
(
2
), pp.
165
181
.
12.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
, 2008, “
Tolerance Simulation of Compliant Sheet Metal Assemblies Using Automatic Node-Based Contact Detection
,”
Proceedings of IMECE2008
,
Boston
,
USA
.
13.
RD&T Technology, 2009, RD&T Manual, Mölndal.
14.
Goldak
,
J.
, and
Springer.
,
M. A.
, 2005,
Computational Welding Mechanics
,
Springer
,
New York
.
15.
Lindgren
,
L.
, 2001, “
Finite Element Modeling and Simulation of Welding. Part 1: Increased Complexity
,”
J. Therm. Stresses
,
24
(
2
), pp
141
192
.
16.
Lindgren
,
L.-E.
, 2007,
Computational Welding Mechanics: Thermomechanical and Microstructructural Simulations
,
CRC Press
,
Boca Raton, FL
.
17.
Lindgren
,
L.
, 2001, “
Finite Element Modeling and Simulation of Welding. Part 3: Efficiency and Integration
,”
J. Therm. Stresses
,
24
(
4
), pp.
305
334
.
18.
Pahkamaa
,
A.
,
Karlsson
,
L.
,
Pavasson
,
J.
,
Karlberg
,
M.
,
Näsström
,
M.
, and
Goldak
,
J.
, 2010, “
A Method to Improve Efficiency in Welding Simulations for Simulation Driven Design
,”
Procedings of ASME 2010 International Design Engineering Technical Conference and Computers and Information in Engineering Conference
,
Montreal
,
Canada
.
19.
Karlsson
,
L.
,
Pahkamaa
,
A.
,
Karlberg
,
M.
,
Löfstrand
,
M.
,
Goldak
,
J.
,
Pavasson
,
J.
, 2011, “
Mechanics of Materials and Structures—A Simulation-Driven Design Approach
,”
J. Mech. Mater. Struct.
,
6
, pp.
277
301
.
20.
20 Goldak Technologies Inc., 2010, www.goldaktec.comwww.goldaktec.com.
21.
Goldak
,
J.
, 2008., “
Distortion and Residual Stress in Welds: The Next Generation
,”
Proceedings of 8th International Conference on Trends in Welding Research
,
Pine Mountain
,
Georgia
.
22.
Corben
,
H. C.
, and
Stehle
,
P.
, 1994,
Classical Mechanics
,
Dover Publications
,
New York
.
23.
Deo
,
M.
, and
Michaleris
,
P.
, 2002, “
Experimental Verification of Distortion Analysis of Welded Stiffeners
,”
J. Ship Prod.
,
4
, pp.
216
225
. Available at http://www.ingentaconnect.com/content/sname/jsp/2002/00000018/00000004/art00005.
24.
Deo
,
M.
,
Michaleris
,
P.
, and
Sun
,
J.
, 2003, “
Prediction of Buckling Distortion of Welded Structures
,”
Sci. Technol. Weld. Joining
,
8
(
1
), pp.
55
61
.
You do not currently have access to this content.