The vast majority of points collected with coordinate measuring machines are not used in isolation; rather, collections of these points are associated with geometric features through fitting routines. In manufacturing applications, there are two fundamental questions that persist about the efficacy of this fitting—first, do the points collected adequately represent the surface under inspection; and second, does the association of substitute (fitted) geometry with the points meet criteria consistent with the standardized geometric specification of the product. This paper addresses the second question for least-squares fitting both as a historical survey of past and current practices, and as a harbinger of the influence of new specification criteria under consideration for international standardization. It also touches upon a set of new issues posed by the international standardization on the first question as related to sampling and least-squares fitting.

References

References
1.
Srinivasan
,
V.
, 2005, “
Elements of Computational Metrology
,”
DIMACS Book Series
,
R.
Janardan
,
M.
Smid
, and
D.
Dutta
, eds.,
Computer Aided Design and Manufacturing, American Mathematical Society
,
R.I.
, Vol.
67
, pp.
79
116
.
2.
Srinivasan
,
V.
, 2007, “
Computational Metrology for the Design and Manufacture of Product Geometry: A Classification and Synthesis
,”
Trans. ASME, J. Comput. Inf. Sci. Eng.
,
7
, pp.
3
9
.
3.
Walker
,
R.
, 1988,
Government-Industry Data Exchange Program
, GIDEP Alert No. X1-A-88-01, Aug. 22.
4.
Stigler
,
S. M.
, 1990,
The History of Statistics: The Measurement of Uncertainty Before 1900
,
Belknap Press of Harvard University Press
,
Cambridge, MA
.
5.
Shakarji
,
C. M.
, 1998, “
Least-Squares Fitting Algorithms of the NIST Algorithm Testing System
,”
J. Res. Natl. Inst. Stand. Technol.
,
103
, pp.
633
641
.
6.
Forbes
,
A.
, 1991,
Least-Squares Best-fit Geometric Elements
, NPL Report, DITC 140/89,
National Physical Laboratory
,
United Kingdom
.
7.
Nievergelt
,
Y.
, 1994, “
Total Least Squares: State-of-the-Art Regression in Numerical Analysis
,”
SIAM Rev.
,
36
(
2
), pp.
258
264
.
8.
O’Rourke
,
J.
, 2001,
Computational Geometry in C
,
2nd ed.
,
Cambridge University
,
New York, NY
.
9.
Pottmann
,
H.
,
Hofer
,
M.
,
Odehnal
,
B.
, and
Wallner
,
J.
, 2004, “
Line Geometry for 3D Shape Understanding and Reconstruction
,”
European Conference on Computer Vision, Lecture Notes in Computer Science
,
Springer
,
Berlin
, pp.
297
309
.
10.
Gelfand
,
N.
, and
Guibas
,
L. J.
, 2004, “
Shape Segmentation Using Local Slippage Analysis
,” Proceedings of the Eurographics Symposium on Geometry Processing, pp.
214
223
.
11.
Shakarji
,
C. M.
, 2003, “
Evaluation of One- and Two-Sided Geometric Fitting Algorithms in Industrial Software
,” Proceedings of the American Society of Precision Engineering Annual Meeting, pp.
100
105
.
12.
Jiang
,
X.
,
Cooper
,
P.
, and
Scott
,
P. J.
, 2011, “
Free-form Surface Filtering Using the Diffusion Equation
,”
Proc. R. Soc. A
,
467
(
2127
), pp.
841
859
.
13.
Bernardini
,
F.
,
Mittleman
,
J.
,
Rushmeier
,
H.
,
Silva
,
C.
,
Taubin
,
G.
, 1999, “
The Ball-Pivoting Algorithm for Surface Reconstruction
,”
IEEE Trans. Vis. Comput. Graph.
,
5
(
4
), pp.
349
359
.
14.
Jiang
,
X.
,
Zhang
,
X.
, and
Scott
,
P.
, 2010, “
Template Matching of Freeform Surfaces Based on Orthogonal Distance Fitting for Precision Metrology
,” Meas. Sci. Technol.,
21
, art. no. 045101.
15.
Edgeworth
,
R.
, and
Wilhelm
,
R. G.
, 1996, “
Uncertainty Management for CMM Probe Sampling of Complex Surfaces
,”
ASME J. Manuf. Sci. Eng., MED
, vol.
4
, pp.
511
518
.
16.
Edgeworth
,
R.
, and
Wilhelm
,
R. G.
, 1999, “
Adaptive Sampling for Coordinate Metrology
,”
Precis. Eng.
,
23
, pp.
144
154
.
17.
Wang
,
J.
,
Jiang
,
X.
, and
Blunt
,
L.
, 2010, “
Simulation of Adaptive Sampling in Profile Measurement for Structured Surfaces
,”
Computing and Engineering Researchers’ Conference
,
University of Huddersfield
,
United Kingdom
.
18.
Gelfand
,
N.
,
Mitra
,
N.
,
Guibas
,
L.
, and
Pottmann
,
H.
, 2005, “
Robust Global Registration
,”
Proceedings of Eurographics Symposium on Geometry Processing
,
Vienna
,
Austria
, pp.
197
206
.
19.
Hameiri
,
E.
, and
Shimshoni
,
I.
, 2003, “
Estimating the Principal Curvatures and the Darboux Frame From Real 3-D Range Data
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
,
33
(
4
), pp.
626
37
.
20.
Lipshitz
,
B.
, and
Fischer
,
A.
, 2005, “
Verification of Scanned Engineering Parts With CAD Models Based on Discrete Curvature Estimation
,”
J. Comput. Inf. Sci. Eng.
,
5
(
2
), pp.
116
117
.
21.
Meyer
,
M.
,
Desbrun
,
M.
,
Schröder
,
P.
, and
Barr
,
A. H.
, 2002, “
Discrete Differential Geometry Operators for Triangulated 2-Manifolds
,”
Proceedings of VisMath ’02
,
Berlin, Germany
.
22.
Sharp
,
G.
,
Lee
,
S.
, and
Wehe
,
D.
, 2002, “
ICP Registration Using Invariant Features
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
1
), pp.
90
102
.
23.
Krystek
,
M.
, and
Anton
,
M.
, 2007, “
A Weighted Total Least-Squares Algorithm for Fitting a Straight Line
,”
Meas. Sci. Technol.
,
18
, pp.
3438
3442
.
You do not currently have access to this content.