Growing use of massive scan data in various engineering applications has necessitated research on point-set surfaces. A point-set surface is a continuous surface, defined directly with a set of discrete points. This paper presents a new approach that extends our earlier work on slicing point-set surfaces into planar contours for rapid prototyping usage. This extended approach can decompose a point-set surface into slices with guaranteed topology. Such topological guarantee stems from the use of Morse theory based topological analysis of the slicing operation. The Morse function for slicing is a height function restricted to the point-set surface, an implicitly defined moving least-squares (MLS) surface. We introduce a Lagrangian multiplier formulation for critical point identification from the restricted surface. Integral lines are constructed to form Morse-Smale complex and the enhanced Reeb graph. This graph is then used to provide seed points for forming slicing contours, with the guarantee that the sliced model has the same topology as the input point-set surface. The extension of this approach to degenerate functions on point-set surface is also discussed.

References

References
1.
Alexa
,
M.
,
Behr
,
J.
,
Cohen-Or
,
D.
,
Fleishman
S.
, and
Levin
D.
, 2001, “
Point set surfaces
,”
Proceedings of the Conference on Visualization
, pp.
21
28
.
2.
Amenta
,
N.
, and
Kil
,
Y. J.
, 2004, “
Defining point-set surfaces
,”
ACM Trans. Graph.
,
23
(
3
), pp.
264
270
.
3.
Levin
,
D.
, 2003, “
Mesh-independent surface interpolation
,”
Geometric Modeling for Scientific Visualization
,
Springer-Verlag
,
Berlin, Heidelber
, pp.
37
49
.
4.
Alexa
,
M.
,
Behr
,
J.
,
Cohen-Or
,
D.
,
Fleishman
,
S.
,
Levin
,
D.
, and
Silva
,
C. T.
, 2003, “
Computing and rendering point set surfaces
,”
IEEE Trans. Visual. Comput. Graph.
,
9
(
1
), pp.
3
15
.
5.
Pauly
,
M.
,
Keiser
,
R.
,
Kobbelt
,
L. P.
, and
Gross
,
M.
, 2003, “
Shape modeling with point-sampled geometry
,”
ACM Trans. Graph.
,
22
(
3
), pp.
641
650
.
6.
Yang
,
P.
, and
Qian
,
X.
, 2009, “
Direct Boolean Intersection Between Acquired and Designed Geometry
,”
Compu.-Aid. Des.
,
41
(
2
), pp.
81
94
.
7.
Yang
,
P.
, and
Qian
,
X.
, 2008, “
Adaptive slicing of Moving Least Squares Surfaces: Toward Direct Manufacturing From Point Cloud Data
,”
ASME Trans. J. Comput. Inf. Sci. Eng.
,
8
(
3
), pp.
433
442
.
8.
Zhang
,
D.
,
Yang
,
P.
, and
Qian
,
X.
, 2009, “
Adaptive NC Path Generation from Massive Point Data with Bounded Error
,”
ASME Trans. J. Manuf. Sci. Eng.
,
131
(
1
), p.
011001
.
9.
Kreveld
,
M.
,
Oostrum
,
R.
,
Bajaj
,
C.
,
Pascucci
,
V.
, and
Schikore
,
D.
, 1997, “
Contour trees and small seed sets for isosurface traversal
,”
Proceedings of the Thirteenth Annual Symposium on Computational Geometry
,
Nice, France
, pp.
212
220
.
10.
Wood
,
Z.
,
Desbrun
,
M.
,
Schroder
,
P.
, and
Breen
,
D.
, 2000, “
Semi-regular mesh extraction from volumes
,”
Proceedings of IEEE Visualization
,
Los Alamitos, California
, pp.
275
282
.
11.
Hart
,
J. C.
, 1998, “
Morse Theory for Implicit Surface Modeling
,”
Mathematical Visualization
,
H.-C.
Hege
and
K.
Polthier
, eds.,
Springer-Verlag
, pp.
257
268
.
12.
Amenta
,
N.
, and
Kil
,
Y. J.
, 2004, “
The Domain of a Point Set Surface
,”
Proceedings of 2004 IEEE/Eurographics Symposium on Point-based Graphics
, pp.
139
147
.
13.
Dey
,
T. K.
, and
Sun
,
J.
, 2005, “
Adaptive MLS Surfaces for Reconstruction with Guarantees
,”
Proceedings of Eurographics Symposium on Geometry Processing
, pp.
43
52
.
14.
Dey
,
T. K.
,
Goswami
,
S.
, and
Sun
,
J.
, 2005, “
Extremal Surface Based Projections Converge and Reconstruct with Isotopy
,” Technical Report No. OSU-CISRC-4-05-TR25.
15.
Yang
,
P.
, and
Qian
,
X.
, 2007, “
Direct computing of surface curvatures for point-set surfaces
,”
Proceedings of 2007 IEEE/Eurographics Symposium on Point-based Graphics
,
Prague, Czech Republic
.
16.
Kim
,
S. K.
, and
Kim
,
C. H.
, 2005, “
Finding ridges and valleys in a discrete surface using a modified MLS approximation
,”
Comput.-Aid. Des.
,
37
(
14
), pp
1533
1542
.
17.
Ohtake
,
Y.
,
Belyaev
,
A. G.
, and
Seidel
,
H.-P.
, 2004, “
Ridge-Valley Lines on Meshes Via Implicit Surface Fitting
,”
ACM Trans. Graph.
,
23
(
3
), pp.
609
612
.
18.
Helman
,
J.
, and
Hesselink
,
L.
, 1989, “
Representation and Display of Vector Field Topology in Fluid Flow Data Sets
,”
IEEE Comput.
,
22
(
8
), pp.
27
36
.
19.
Helman
,
J.
, and
Hesselink
,
L.
, 1990, “
Surface Representations of Two- and Three-Dimensional Fluid Flow Topology
,”
Proceedings of the First IEEE Conference on Visualization
, pp.
6
13
.
20.
Hart
,
J. C.
, 1998, “
Morse Theory for Implicit Surface Modeling
,”
Mathematical Visualization
,
H.-C.
Hege
and
K.
Polthier
eds.,
Springer-Verlag
, pp.
257
268
.
21.
H.
Edelsbrunner
,
J.
Harer
, and
A.
Zomorodian
, 2003, “
Hierarchical Morse-Smale Complexes for Piecewise Linear 2-Manifolds
,”
Discr. Comput. Geo.
,
30
(
1
), pp.
87
107
.
22.
Acar
,
E. U.
,
Choset
,
H.
,
Rizzi
,
A. A.
,
Atkar
,
P.
, and
Hull
,
D.
, 2002, “
Morse Decompositions for Coverage Tasks
,”
Int. J. Robot. Res.
,
21
(
4
), pp.
331
344
.
23.
Coleman
,
T. F.
, and
Li
,
Y.
, 1993, “
An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds
,” Technical Report No. TR 93-1342, Ithaca, NY, USA.
24.
Milnor
,
J.
, 1963,
Morse Theory
,
Princeton University Press
,
Princeton, NJ
.
25.
Hassell
,
C.
, and
Rees
,
E.,T.
, 1993, “
The index of a constrained critical point
,”
Am. Math. Monthly
,
100
(
8
), pp.
772
778
.
26.
Press
,
W.
,
Flannery
,
B.
,
Teukolsky
,
S.
, and
Vetterling
,
W.
, 1988,
Numerical Recipes in C: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge
.
27.
Tai
,
C.-L.
,
Shinagawa
,
Y.
, and
Kunii
,
T. L.
, 1998, “
A Reeb Graph-Based Representation for Non-Sequential Construction of, Topologically Complex Shapes
,”
Comput. Graph.
,
22
(
2–3
), pp.
255
268
.
28.
Wood
,
Z.
,
Hoppe
,
H.
,
Desbrun
,
M.
, and
Schroder
,
P.
, 2004, “
Removing Excess Topology From Isosurfaces
,”
ACM Trans. Graph.
,
23
(
2
), pp.
190
208
.
29.
Pauly
,
M.
, 2003, “
Point Primitives for Interactive Modeling and Processing of 3d Geometry
,” Ph.D. thesis, ETH Zurich.
30.
Banchoff
,
T. F.
, 1970, “
Critical Points and Curvature for Embedded Polyhedral Surfaces
,”
Am. Math. Monthly
,
77
, pp.
475
485
.
You do not currently have access to this content.