The problem of finding monotone paths between two given points has useful applications in path planning, and in particular, it is useful to look for minimum link paths. We are given a simple polygon P or a polygonal domain D with n vertices and a triplet of input parameters: (s, t, d), where s and t are two points in the plane and d is any direction. We show how to answer a query for the existence of a d-monotone path between s and t inside P (or D) in logarithmic time after preprocessing P in O(En) time, or D in O(En + ERlogR) time, where E is the size of the visibility graph of P (or D), and R is the number of reflex vertices in D. Our approach is based on the novel idea utilizing the dual graph of the trapezoidal map of P (or D). For polygonal domains, our approach uses a trapezoidal map associated with each visibility edge of D, and we show how to compute this large set of trapezoidal maps efficiently. Furthermore, we show how to output a minimum linkd-monotone path between points s and t, for an arbitrary input triplet (s, t, d).

References

References
1.
Cook
IV,
A. F.
, and
Wenk
,
C.
, 2009, “
Link Distance and Shortest Path Problems in the Plane
,” AAIM 2009, LNCS 5564, pp.
140
151
.
2.
Castillo
,
O.
,
Soria
,
J.
,
Arias
,
H.
,
Morales
,
J. B.
, and
Inzunza
,
M.
, 2007, “
Intelligent Control and Planning of Autonomous Mobile Robots Using Fuzzy Logic and Multiple Objective Genetic Algorithms
,”
Analysis and Design of Intelligent Systems using Soft Computing Techniques
,
P.
Melin
,
O.
Castillo
,
E. G.
Ramírez
,
J.
Kacprzyk
, and
W.
Pedrycz
, eds., Advances in Soft Computing
41
,
Springer-Verlag
Berlin Heidelberg
, pp.
799
807
.
3.
Diaz-Banez
,
J. M.
,
Hernandez
,
G.
,
Oliveros
,
D.
,
Ramirez-Vigueras
,
A.
,
Sellares
,
J. A.
,
Urrutia
,
J.
, and
Ventura
,
I.
, 2008, “
Computing Shortest Heterochromatic Monotone Routes
,”
Oper. Res. Lett.
,
36
, pp.
684
687
.
4.
Dwivedi
,
R.
, and
Kovacevic
,
R.
, 2004, “
Automated Torch Path Planning Using Polygon Subdivision for Solid Freeform Fabrication Based on Welding
,”
J. Manuf. Syst.
,
23
(
4
), pp.
278
291
.
5.
Liu
,
R.
, and
Ntafos
,
S.
, 1988, “
On Decomposing Polygons into Uniformly Monotone Components
,”
Inf. Process. Lett.
,
27
, pp.
85
89
.
6.
Suri
,
S.
, 1986, “
A Linear Time Algorithm With Minimum Link Paths Inside a Simple Polygon
,”
Comput. Vis. Graph. Image Process.
,
35
, pp.
99
110
.
7.
Chazelle
,
B.
, 1991, “
Triangulating a Simple Polygon in Linear Time
,”
Discrete Comput. Geom
,
6
, pp.
485
524
.
8.
Arkin
,
E. M.
,
Mitchell
,
J. S. B.
, and
Suri
,
S.
, 1992, “
Optimal Link Path Queries in a Simple Polygon
,” In third Symposium on Discrete Algorithms (SODA), pp.
269
279
.
9.
Mitchell
,
J. S. B.
,
Rote
,
G.
, and
Woeginger
,
G.
, 1992, “
Minimum-Link Paths Among Obstacles in the Plane
,”
Algorithmica
,
8
, pp.
431
459
.
10.
Edelsbrunner
,
H.
,
Guibas
,
L. J.
, and
Sharir
,
M.
, 1990, “
The Complexity and Construction of Many Faces in Arrangements of Lines and of Segments
,”
Discrete Comput. Geom.
,
5
, pp.
161
196
.
11.
Amato
,
N. M.
,
Goodrich
,
M. T.
, and
Ramos
,
E. A.
, 1995, “
Computing Faces in Segment and Simplex Arrangements
,” Proceedings of the 27th ACM Symposium on Theory of Computing (STOC), pp.
672
682
.
12.
Chen
,
D. Z.
,
Daescu
,
O.
, and
Klenk
,
K. S.
, 1997, “
On Geometric Path Query Problems
,” Proceedings of the 5th International Workshop on Algorithms and Data Structures, pp.
248
257
.
13.
Arkin
,
E. M.
,
Connelly
,
R.
, and
Mitchell
,
J. S. B.
, 1989, “
On Monotone Paths Among Obstacles, With Applications to Planning Assemblies
,” Proceedings of the ACM Symposium on Computational Geometry, pp.
334
343
.
14.
de Berg
,
M.
,
Cheong
,
O.
,
Kreveld
,
M. V.
, and
Overmars
,
M.
, 2008,
Computational Geometry: Algorithms and Applications
,
3rd ed.
,
Springer-Verlag
,
Heidelberg, Berlin
.
15.
Nykänen
,
M.
, and
Ukkonen
,
E.
, 1994, “
Finding lowest common ancestors in arbitrarily directed trees
,”
Inf. Process. Lett.
,
50
(
6
), pp.
307
310
.
16.
Hershberger
,
J.
, 1989, “
An Optimal Visibility Graph Algorithm for Triangulated Simple Polygons
,”
Algorithmica
,
4
, pp.
141
155
.
17.
Kirkpatrick
,
D.
, 1983, “
Optimal Search in Planar Subdivisions
,”
SIAM J. Comput.
,
12
(
1
), pp.
28
35
.
18.
Edelsbrunner
,
H.
,
Guibas
,
L. J.
, and
Stol
,
J.
, 1986, “
Optimal Point Location in a Monotone subdivision
,”
SIAM J. Comput.
,
15
, pp.
317
340
.
19.
Ghosh
,
S. K.
, and
Mount
,
D. M.
, 1991, “
An Output-Sensitive Algorithm for Computing Visibility
,”
SIAM J. Comput.
,
20
(
5
), pp.
888
910
.
20.
Snoeyink
,
J.
, and
Kreveld
,
M. V.
, 1997, “
Linear-Time Reconstruction of Delaunay Triangulations with Applications
,” Proceedings of the 5th Annual European Symposium on Algorithms, pp.
459
471
, September 15–17.
21.
Thorup
,
M.
, 2004, “
Compact Oracles for Reachability and Approximate Distances in Planar Digraphs
,”
J. ACM
,
51
, pp.
993
1024
.
You do not currently have access to this content.