The effective planning of a product’s manufacture is critical to both its cost and delivery time. Recognition of this importance has motivated over 30 years of research into automated planning systems and generated a large literature covering many different manufacturing technologies. But complete automation has proved difficult in most manufacturing domains. However, as manufacturing hardware has evolved to become more automated and computer aided design software has been developed to support the creation of complex geometries; planning the physical fabrication of a virtual model is still a task that occupies thousands of engineers around the world, every day. We intend for this paper to be useful to newcomers in this field, who are interested in placing the current state-of-the-art in context and identifying open research problems across a range of manufacturing processes. This paper discusses the capabilities, limitations and challenges of automated planning for four manufacturing technologies: machining, sheet metal bending, injection molding, and mechanical assembly. Rather than presenting an exhaustive survey of research in these areas, we focus on identifying the characteristics of the planning task in different domains, current research directions, and open problems in each area. Our key observations are as following. First, the incorporation of AI techniques, geometric modeling, computational geometry, optimization, and physics-based modeling has led to significant advances in the automated planning area. Second, commercial tools are available to aid the manufacturing planning process in most manufacturing domains. Third, manufacturing planning is computationally challenging and still requires significant human input in most manufacturing domains. Fourth, advancement in several emerging areas has the potential to create, in the near future, a step-change in the capabilities of automated planning systems. Finally, we believe that deploying fully automated planning systems can lead to significant productivity benefits.

References

References
1.
Descotte
,
Y.
, and
Latombe
,
J. C.
, 1981, “
GARI: A Problem Solver That Plans How to Machine Mechanical Parts
,”
IJCAI’81 Proceedings of the 7th International Joint Conference on AI
.
2.
Capponi
,
V.
, and
Villeneuve
,
F.
, 2009, “
Towards a Five-Axis Machining CAPP System: A Set-Up Planning Tool Solving Accessibility Constraints
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), pp.
14
.
3.
Martinet
,
A.
,
Soler
,
C.
,
Holzschuch
,
N.
, and
Sillion
,
F. X.
, 2006, “
Accurate Detection of Symmetries in 3D Shapes
,”
ACM Trans. Graph.
,
25
(
2
), pp.
439
464
.
4.
Choi
,
Y.-K.
, and
Banerjee
,
A.
, 2007, “
Tool Path Generation and Tolerance Analysis for Free-Form Surfaces
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
689
696
.
5.
Wang
,
N.
, and
Tang
,
K.
, 2007, “
Automatic Generation of Gouge-Free and Angular-Velocity-Compliant Five-Axis Toolpath
,”
CAD
,
39
(
10
), pp.
841
852
.
6.
Sundararajan
,
V.
, and
Wright
,
P. K.
, 2008, “
Applications of Software Engineering to Manufacturing Process Planning
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
3
), p.
034001
.
7.
D’Souza
,
R.
,
Wright
,
P. K.
, and
Séquin
,
C.
, 2002, “
Handling Tool Holder Collision in Optimal Tool Sequence Selection for 2.5-D Pocket Machining
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
4
), pp.
245
356
.
8.
Arya
,
S.
,
Cheng
,
S. W.
, and
Mount
,
D. M.
, 2001, “
Approximation Algorithms for Multiple-Tool Milling
,”
IJCGA
,
11
(
3
), pp.
339
372
.
9.
Sunila
,
V. B.
, and
Pande
,
S. S.
, 2008, “
Automatic Recognition of Features From Freeform Surface CAD Models
,”
CAD
,
40
(
4
), pp.
502
517
.
10.
Li
,
S.
, and
Shah
,
J. J.
, 2007, “
Recognition of User-Defined Turning Features for Mill/Turn Parts
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
, pp.
225
234
.
11.
Pehlivan
,
S.
, and
Summers
,
J. D.
, 2008, “
A Review of Computer-Aided Fixture Design With Respect to Information Support Requirements
,”
Int. J. Prod. Res.
,
46
(
4
), pp.
929
947
.
12.
Boyle
,
I. M.
,
Rong
,
K.
, and
Brown
,
D. C.
, 2006, “
CAFixD: A Case-Based Reasoning Fixture Design Method. Framework and Indexing Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
6
(
1
), pp.
1
90
.
13.
Rong
,
K.
, 2003, “
Geometric and Kinetic Model Based Computer-aided Fixture Design Verification
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
3
), pp.
177
272
.
14.
Sundararajan
,
V.
, and
Wright
,
P. K.
, 2007, “
CyberCut: A Coordinated Pipeline of Design, Process Planning and Manufacture
,”
Process Planning And Scheduling for Distributed Manufacturing
,
Springer Series in Advanced Manufacturing
.
15.
Ahn
,
S.
,
Sundararajan
,
V.
,
Smith
,
C.
,
Kannan
,
B.
,
D’Souza
,
R.
,
Sun
,
G.
,
Mohole
,
A.
, and
Wright
,
P.
, 2001, “
CyberCut: An Internet-based CAD/CAM System
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
1
), pp.
52
60
.
16.
Shea
,
K.
,
Ertelt
,
C.
,
Gmeiner
,
T.
, and
Ameri
,
F.
, 2010,
Design-to-Fabrication Automation for the Cognitive Machine Shop
,”
Adv. Eng. Inf.
,
24
(
3
), pp.
251
268
.
17.
Shah
,
J. J.
,
Anderson
,
D.
,
Kim
,
Y. S.
, and
Joshi
,
S.
, 2001, “
A Discourse on Geometric Feature Recognition From CAD Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
1
), pp.
41
51
.
18.
Nesic
,
N.
, and
Miljkovic
,
Z.
, 2008, “
A Review of Automated Feature Recognition With Rule-Based Pattern Recognition
,”
Comput. Ind.
,
59
(
4
), pp.
321
337
.
19.
Gupta
,
S. K.
, and
Nau
,
D. S.
, 1995, “
Systematic Approach to Analyzing the Manufacturability of Machined Parts
,”
CAD
,
27
(
5
), pp.
323
342
.
20.
Xu
,
X. W.
, and
Newman
,
S. T.
, 2006, “
Making CNC Machine Tools More Open, Interoperable and Intelligent—A Review of the Technologies
”,
Comput. Ind.
,
57
(
2
), pp.
141
152
.
21.
Waiyagan
,
K.
, and
Bohez
,
E. L. J.
, 2009, “
Intelligent Feature Based Process Planning for Five-Axis Mill-Turn Parts
,”
Comput. Ind.
,
60
(
5
), pp.
296
316
.
22.
Lasemi
,
A.
,
Xue
,
D.
, and
Gu
,
P.
, 2010, “
Recent Development in CNC Machining of Freeform Surfaces: A State-of-the-Art Review
,”
CAD
,
42
(
7
), pp.
641
654
.
23.
Petrzelka
,
J. E.
, and
Frank
,
M. C.
, 2010, “
Advanced Process Planning for Subtractive Rapid Prototyping
,”
Rapid Prototyping J.
,
16
(
3
), pp.
216
224
.
24.
Frank
,
M. C.
,
Wysk
,
R. A.
, and
Joshi
,
S. B.
, 2004, “
Rapid Planning for CNC Machining—A New Approach to Rapid Prototyping
,”
J. Manuf. Syst.
,
23
(
3
), pp.
242
255
.
25.
Inui
,
M.
, and
Ohta
,
A.
, 2007, “
Using a GPU to Accelerate Die and Mold Fabrication
”,
IEEE Comput. Graphics Appl.
,
27
(
1
), pp.
82
88
.
26.
Frank
,
M. C.
,
Wysk
,
R. A.
, and
Joshi
,
S. B
, 2006, “
Determining Setup Orientations from the Visibility of Slice Geometry for Rapid CNC Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
228
238
.
27.
Michopoulos
,
J. G.
,
Farhat
,
C.
, and
Fish
,
J.
, 2005, “
Modeling and Simulation of Multiphysics Systems
,”
ASME J. Comput. Inf. Sci. Eng.
5
, pp.
198
213
.
28.
Raksiri
,
C.
, and
Parnichkun
,
M.
, 2004, “
Geometric and Force Errors Compensation in a 3-Axis CNC Milling Machine
,”
Int. J. Mach. Tools Manuf.
,
44
(
12–13
), pp.
1283
1291
.
29.
Holroyd
,
G.
, 2007, “
The Modelling and Correction of Ball-Screw Geometric, Thermal and Load Errors on CNC Machine Tools
,”
Doctoral thesis
,
The University of Huddersfield
,
UK
.
30.
Chen
,
L. L.
,
Chou
,
S. Y.
, and
Woo
,
T. C.
, 1993, “
Parting Directions for Mould and Die Design
,”
CAD
,
25
(
12
), pp.
762
768
.
31.
Chen
,
L. L.
,
Chou
,
S. Y.
, and
Woo
,
T. C.
, 1995, “
Partial Visibility for Selecting a Parting Direction in Mould and Die Design
,”
J. Manuf. Syst.
,
14
(
5
), pp.
319
330
.
32.
Ravi
,
B.
, and
Srinivasan
,
M. N.
, 1990, “
Decision Criteria for Computer-Aided Parting Surface Design
,”
CAD
,
22
(
1
), pp.
11
18
.
33.
Wong
,
T.
,
Tan
,
S. T.
, and
Sze
,
W. S.
, 1998, “
Parting Line Formation by Slicing a 3D CAD Model
,”
Eng. Comput.
,
14
(
4
), pp.
330
343
.
34.
Hui
,
K. C.
, and
Tan
,
S. T.
, 1992, “
Mould Design With Sweep Operations-A Heuristic Search Approach
,”
CAD
,
24
(
2
), pp.
81
91
.
35.
Majhi
,
J.
,
Gupta
,
P.
, and
Janardan
,
R.
, 1996, “
Computing a Flattest, Undercut-Free Parting Line for a Convex Polyhedron, With Application to Mold Design
,” Applied Computational Geometry Towards Geometric Engineering,
Lect. Notes Comput. Sci.
,
1148
, pp.
109
120
.
36.
Ahn
,
H. K.
,
Berg
,
M.
,
Bose
,
P.
,
Cheng
,
S. W.
,
Halperin
,
D.
,
Matoušek
,
J.
, and
Schwarzkopf
,
O.
, 2002, “
Separating an Object From Its Cast
,”
CAD
,
34
(
8
), pp.
547
559
.
37.
Elber
,
G.
,
Chen
,
X.
, and
Cohen
,
E.
, 2005, “
Mold Accessibility via Gauss Map Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
2
), pp.
79
85
.
38.
McMains
,
S.
, and
Chen
,
X.
, 2006, “
Finding Undercut-Free Parting Directions for Polygons with Curved Edges
,”
ASME J. Comput. Inf. Sci. Eng.
,
6
(
1
), pp.
60
68
.
39.
Kharderkar
,
R.
,
Burton
,
G.
, and
McMains
,
S.
, 2006, “
Finding Feasible Mold Parting Directions Using Graphics Hardware
,”
CAD
,
38
(
4
), pp.
327
341
.
40.
Priyadarshi
,
A. K.
, and
Gupta
,
S. K.
, 2006, “
Finding Mold-Piece Regions Using Computer Graphics Hardware
,”
Geometric Modeling and Processing, Lecture Notes in Computer Science
, Vol.,
4077
, pp.
655
662
.
41.
Yin
,
Z.
,
Ding
,
H.
, and
Xiong
,
Y.
, 2001, “
Virtual Prototyping of Mold Design: Geometric Mouldability Analysis for Near-Net-Shape Manufactured Parts by Feature Recognition and Geometric Reasoning
,”
CAD
,
33
(
2
), pp.
137
154
.
42.
Fu
,
M. W.
,
Fuh
,
J. Y. H.
, and
Nee
,
A. Y. C.
, 1999, “
Undercut Feature Recognition in an Injection Mould Design System
,”
CAD
,
31
(
12
), pp.
777
790
.
43.
Lu
,
H. Y.
, and
Lee
,
W. B.
, 2000, “
Detection of Interference Elements and Release Directions in Die-cast and Injection-moulded Components
,”
Proc. IMechE, Part B: J Eng. Manuf.
,
214
(
6
), pp.
431
441
.
44.
Chen
,
Y.
, and
Rosen
,
D. W.
, 2002, “
A Region Based Method to Automated Design of Multi-Piece Molds with Application to Rapid Tooling
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
2
), pp.
86
97
.
45.
Banerjee
,
A. G.
, and
Gupta
,
S. K.
, 2007, “
Geometric Algorithms for Automated Design of Side Actions in Injection Molding of Complex Parts
,”
CAD
,
39
(
10
), pp.
882
897
.
46.
Shin
,
K. H.
, and
Lee
,
K.
, 1993, “
Design of Side Cores of Injection Mold from Automatic Detection of Interference Faces
,”
J. Des. Manuf.
,
3
(
4
), pp.
225
236
.
47.
Ye
,
X. G.
,
Fuh
,
J. Y. H.
, and
Lee
,
K. S.
, 2004, “
Automatic Undercut Feature Recognition for Side Core Design of Injection Molds
,”
ASME J. Mech. Des.
,
126
, pp.
519
526
.
48.
Chen
,
Y.
, and
Rosen
,
D. W.
, 2003, “
A Reverse Glue Approach to Automated Construction of Multi-Piece Molds
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
3
), pp.
219
230
.
49.
Priyadarshi
,
A. K.
, and
Gupta
,
S. K.
, 2004, “
Geometric Algorithms for Automated Design of Multi-Piece Permanent Molds
,”
CAD
,
36
(
3
), pp.
241
260
.
50.
Dhaliwal
,
S.
,
Gupta
,
S. K.
,
Huang
,
J.
, and
Priyadarshi
,
A.
, 2003, “
Algorithms for Computing Global Accessibility Cones
,”
J. Comput. Inf. Sci. Eng.
,
3
(
3
), pp.
200
209
.
51.
Huang
,
J.
,
Gupta
,
S. K.
, and
Stoppel
,
K.
, 2003, “
Generating Sacrificial Multi-Piece Molds Using Accessibility Driven Spatial Partitioning
,”
CAD
,
35
(
3
), pp.
1147
1160
.
52.
Kumar
,
M.
, and
Gupta
,
S. K.
, 2002, “
Automated Design of Multi-Stage Molds for Manufacturing Multi-Material Objects
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
399
407
.
53.
Li
,
X.
, and
Gupta
,
S. K.
, 2004, “
Geometric Algorithms for Automated Design of Rotary-Platen Multi-Shot Molds
,”
CAD
,
36
(
12
), pp.
1171
1187
.
54.
Yin
,
Z. P.
,
Ding
,
H.
, and
Xiong
,
Y. L.
, 2006, “
Geometric Reasoning on Molding Planning for Multishot Mold Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
6
(
3
), pp.
241
251
.
55.
Priyadarshi
,
A. K.
, and
Gupta
,
S. K.
, 2009, “
Algorithms for Generating Multi-Stage Molding Plans for Articulated Assemblies
,”
Rob. Comput. Integr. Manuf.
,
32
(
3/4
), pp.
350
365
.
56.
Zhai
,
M.
,
Lam
,
Y. C.
, and
Au
,
C. K.
, 2006, “
Runner Sizing and Weld Line Positioning for Plastics Injection Moulding With Multiple Gates
,”
Eng. Comput.
,
21
(
3
), pp.
218
224
.
57.
Zhai
,
M.
,
Lam
,
Y. C.
, and
Au
,
C. K.
, 2009, “
Runner Sizing in Multiple Cavity Injection Mould by Non-Dominated Sorting Genetic Algorithm
,”
Eng. Comput.
,
25
, pp.
237
245
.
58.
Li
,
C. G.
, and
Li
,
C. L.
, 2008, “
Plastic Injection Mould Cooling System Design by the Configuration Space Method
,”
CAD
,
40
(
3
), pp.
334
349
.
59.
Hassan
,
H.
,
Regnier
,
N.
,
Pujos
,
C.
, and
Defaye
,
G.
, 2009, “
3D Study on the Effect of Process Parameters on the Cooling of Polymer by Injection Molding
,”
J. Appl. Polym. Sci.
,
114
(
5
), pp.
2901
2914
.
60.
Rhee
,
B.-O.
,
Park
,
C.-S.
,
Chang
,
H.-K.
,
Jung
,
H.-W.
, and
Lee
,
Y.-J.
, 2010, “
Automatic Generation of Optimum Cooling Circuit for Large Injection Molded Parts
,”
Int. J. Precis. Eng. Manuf.
,
11
(
3
), pp.
439
444
.
61.
Adamowicz
,
M.
, and
Albano
,
A.
, 1976, “
Nesting Two Dimensional Shapes in Rectangular Modules
,”
CAD
,
8
(
1
), pp.
27
33
.
62.
Dowsland
,
K.
, and
Dowsland
,
W.
, 1995, “
Solution Approaches to Irregular Nesting Problems
,”
Eur. J. Oper. Res.
,
84
(
3
), pp.
506
521
.
63.
Smith
,
J. S.
,
Cohen
,
P. H.
,
Davis
,
J. W.
, and
Irani
,
S. A.
, 1992, “
Process Plan Generation for Sheet Metal Parts Using an Integrated Feature-Based Expert System Approach
,”
Int. J. Prod. Res.
,
30
(
5
), pp.
1175
1190
.
64.
Cser
,
L.
,
Geiger
,
M.
,
Greska
,
W.
, and
Hoffman
,
M.
, 1991, “
Three Kinds of Case-Based Learning in Sheet Metal Manufacturing
,”
Comput. Ind.
,
17
, pp.
195
206
.
65.
Nnaji
,
B. O.
,
Kang
,
T. S.
,
Yeh
,
S. C.
, and
Chen
,
J. P.
, 1991, “
Feature Reasoning for Sheet Metal Components
,”
Int. J. Prod. Res.
,
29
(
9
), pp.
1867
1896
.
66.
Doflou
,
J. R.
,
Vancza
,
J.
, and
Aerens
,
R.
,2005, “
Computer Aided Process Planning for Sheet Metal Bending
,”
Comput. Ind.
,
56
(
7
), pp.
747
771
.
67.
Gupta, S. K. Bourne
,
D. A.
,
Kim
,
K.
, and
Krishnan
,
S. S.
, 1998, “
Automated Process Planning for Robotic Sheet Metal Bending Press Brakes
,”
J. Manuf. Syst.
,
17
(
5
), pp.
338
360
.
68.
Márkusa
,
A.
,
Vánczaa
,
J.
, and
Kovácsb
,
A.
, 2002, “
Constraint-based Process Planning in Sheet Metal Bending
,”
CIRP Ann—Manuf. Technol.
,
51
(
1
), pp.
425
428
.
69.
Ashley
,
S.
, 1997, “
Intelligent Sheet Metal Bending
,”
Mech. Eng.
,
119
(
1
),
62
64
.
70.
De Vin
,
L. J.
,
De Vries
,
J.
,
Streppel
,
A. H.
,
Klassen
,
E. J. W.
, and
Kals
,
H. J. J.
, 1994, “
The Generation of Bending Sequences in a CAPP System for Sheet Metal Components
,”
J. Mater. Process. Technol.
,
41
, pp.
331
339
.
71.
Kannan
,
T. R.
, and
Shunmugam
,
M. S.
, 2008, “
Planner for Sheet Metal Components to Obtain Optimal Bend Sequence Using a Genetic Algorithm
,”
Int. J. Comput. Integr. Manuf.
,
21
(
7
), pp.
790
802
.
72.
Radin
,
B.
, and
Shiptalni
,
M.
, 1996, “
Two-Stage Algorithm for Determination of the Bending Sequence in Sheet Products
,”
Proceedings of the ASME Design Automation Conference
,
Irvine, CA, USA
, pp.
1
12
.
73.
Alva
,
U.
, and
Gupta
,
S. K.
, 2001, “
Automated Design of Sheet Metal Punches for Bending Multiple Parts in a Single Setup
,”
Rob. Comput. Integr. Manuf.
,
17
, pp.
33
47
.
74.
Gupta
,
S. K.
, and
Bourne
,
D. A.
, 1999, “
Sheet Metal Bending: Generating Shared Setups
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
689
694
.
75.
De Fazio
,
T.
, and
Whitney
,
D.
, 1987, “
Simplified Generation of all Mechanical Assembly Sequences
,”
IEEE J. Robot. Autom.
,
3
(
6
), pp.
640
658
.
76.
Wilson
,
R. H.
, and
Latombe
,
J. C.
, 1994, “
Geometric Reasoning About Mechanical Assembly
,”
Artif. Intell.
,
71
, pp.
371
396
.
77.
Woo
,
T. C.
, and
Dutta
,
D.
, 1991, “
Automatic Disassembly and Total Ordering in Three Dimensions
,”
ASME J. Eng. Ind.
,
113
(
1
), pp.
207
213
.
78.
Beasley
,
D.
, and
Martin
,
R. R.
, 1993, “
Disassembly Sequences for Objects Built From Unit Cubes
,”
CAD
,
25
(
12
), pp.
751
761
.
79.
Milner
,
J. M.
,
Graves
,
S. C.
, and
Whitney
,
D. E.
, 1994, “
Using Simulated Annealing to Select Least-Cost Assembly Sequences
,”
IIEE Robotics and Automation Conference
,
San Diego, CA
.
80.
Homem de Mello
,
L. S.
, and
Sanderson
,
A. C.
, 1991, “
A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences
,”
IEEE Trans. Rob. Autom.
,
7
(
2
), pp.
228
240
.
81.
Wilson
,
R. H.
, 1998, “
Geometric Reasoning About Assembly Tools
,”
Artif. Intell.
,
98
(
1–2
), pp.
237
279
.
82.
Gupta
,
S. K.
,
Paredis
,
C. J.
,
Sinha
,
R.
, and
Brown
,
P. F.
, 2001, “
Intelligent Assembly Modeling and Simulation
,”
Assem. Autom.
,
21
(
3
), pp.
215
235
.
83.
Wise
,
K. D.
, and
Bowyer
,
A.
, 2000, “
A Survey of Global Configuration-Space Mapping Techniques for a Single Robot in a Static Environment
,”
Int. J. Rob. Res.
,
19
(
8
), pp.
762
779
.
84.
Sung
,
R.
,
Corney
,
J. R.
, and
Clark
,
D.
, 2001, “
Automatic Assembly Feature Recognition and Disassembly Sequence Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
4
) pp.
281
388
.
85.
Lambert
,
A. J. D.
, 2003, “
Disassembly Sequencing: A Survey
,”
Int. J. Prod. Res.
,
41
(
16
), pp.
3721
3759
.
86.
Reichl
,
M.
,
Dünger
,
R.
,
Schiewe
,
A.
,
Klemmer
,
T.
,
Hartleb
,
M.
,
Lux
,
C.
, and
Fröhlich
,
B.
, 2010, “
GPU-based Ray Tracing of Dynamic Scenes
,”
J. Virtual Reality Broadcast.
,
7
(
1
).
87.
Rodriguez
,
A.
,
Bourne
,
D.
,
Mason
,
M.
,
Rossano
,
G.
, and
Wang
,
J.
Failure Detection in Assembly: Force Signature Analysis
,”
IEEE Conference on Automation Science and Engineering
(CASE 2010), August 21–24,
Toronto, Canada
.
88.
Turkiyyah
,
G. M.
,
Karam
,
W. B.
,
Ajami
,
Z.
, and
Nasri
,
A.
, 2011, “
Mesh Cutting During Real-Time Physical Simulation
,”
CAD
,
43
(
7
), pp.
809
819
.
89.
Glotzer
,
S.
,
Kim
,
S.
,
Cummings
,
P. T.
,
Deshmukh
,
A.
,
Head-Gordon
,
M.
,
Karniadakis
,
G.
,
Petzold
,
L.
,
Sagui
,
C.
, and
Shinozuka
,
M.
, 2009,
International Assessment of Research and Development in Simulation-Based Engineering And Science
,
World Technology Evaluation Center
,
Maryland
.
You do not currently have access to this content.