The long-standing goal of computer aided design (CAD)/computer aided engineering (CAE) integration demands seamless interfaces between geometric design and engineering analysis/simulation tasks. The key challenge to this integration stems from the distinct and often incompatible roles geometric representations play, respectively, in design and analysis. This paper critically examines and compares known mesh-based and meshfree approaches to CAD/CAE integration, focusing on the basic tasks and components required for building fully integrated engineering applications. For each task, we identify the fundamental requirements and challenges and discuss how they may be met by known techniques and proposed solutions.

References

References
1.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method
,
5th ed.
,
Butterworth-Heinemann
,
London
.
2.
Rvachev
,
V. L
,
Sheiko
,
T.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2001, “
Transfinite Interpolation Over Implicity Defined Sets
,”
Comput. Aided Geom. Des.
,
18
, pp.
195
220
.
3.
Höllig
,
K.
, 2003,
Finite Element Methods With B-Splines
, Number 26 in Frontiers in Applied Mathematics, SIAM.
4.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
, 1989,
Concepts and Applications of Finite Element Analysis
,
3rd ed.
,
Wiley
,
New York, NY
.
5.
Clark
,
B. W.
, 2009,
Proceedings of the 18th International Meshing Roundtable
,
Springer Verlag
,
Berlin/Heidelberg
.
6.
Hoffmann
,
C. M.
, 2001, “
Robustness in Geometric Computations
,”
J. Comput. Inf. Eng.
,
1
, p.
143
.
7.
Hughes
,
T.J.R.
,
Cottrell
,
J.A.
, and
Bazilevs
,
Y.
, 2005,
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
8.
Sabin
,
M.
, Subdivision: Tutorial Notes, Course Notes for SMI2001, Genoa, 2001.
9.
Natekar
,
D.
,
Zhang
,
X.
, and
Subbarayan
,
G.
, 2004,
Constructive Solid Analysis
:
A Hierarchical, Geometry-Based Meshless Analysis Procedure for Integrated Design and Analysis, CAD
,
36
(
5
), pp.
473
486
.
10.
Brebbia
,
C. A.
and
Wrobel
,
L. C.
, 1980, “
The Boundary Element Method
,”
Computer Methods in Fluids (A 81-28303 11-34)
,
Pentech Press, Ltd.
,
London
, pp.
26
48
.
11.
Aliabadi
,
M. H.
, 2002,
The Boundary Element Method
, Vol.
2
.
Wiley
,
Chichester, UK
.
12.
Blandford
,
G. E.
,
Ingraffea
,
A. R.
, and
Liggett
,
J. A.
, 1981,
Two-Dimensional Stress Intensity Factor Computations Using the Boundary Element Method
,
Int. J. Numer. Methods Eng.
,
17
(
3
), pp.
387
404
.
13.
Apanovich
,
V. N.
, 1991,
Method of External Finite Element Approximations (Metod vneshnikh konechnoelementnykh aproximacij)
, Vyshejshaja shkola, Minsk (in Russian).
14.
Babuška
,
I.
,
Strouboulis
,
T.
, and
Copps
,
K.
, 2000, “
The Design and Analysis of the Generalized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
181
, pp.
43
69
.
15.
Cox
,
J. J.
, 1991, “
Domain Composition Methods for Combining Geometric and Continuum Field Models
,” Doctoral Dissertation, Purdue University, West Lafayette, IN.
16.
Charlesworth
,
W. W.
,
Cox
,
J. J.
, and
Anderson
,
D. C.
, 1994, “
The Domain Composition Method Applied to Poisson’s Equation in Two Dimensions
,”
Int. J. Numer. Methods Eng.
,
37
(
18
), pp.
3093
3115
.
17.
Babuska
,
I.
,
Banerjee
,
U.
, and
Osborn
,
J.
, 2003,
“Survey of Meshless and Generalized Finite Element Methods: A Unified Approach
,”
Acta Numerica
,
12
, pp.
1
125
.
18.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
, 1999, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
19.
Dolbow
,
J.
,
Moës
,
N.
, and
Belytschko
,
T.
, 2000, “
Discontinuous Enrichment in Finite Elements With a Partition of Unity Method
,”
Finite Elem. Anal. Des.
,
36
(
3–4
), pp.
235
160
.
20.
Daux
,
C.
,
Moës
,
N.
,
Dolbow
,
J.
,
Sukumar
,
N.
, and
Belytschko
,
T.
, 2000, “
Arbitrary Branched and Intersecting Cracks With the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
48
, pp.
1741
1760
.
21.
Moran
,
B.
,
Sukumar
,
N.
,
Moës
,
N.
, and
Belytschko
,
T.
, 2000, “
Extended Finite Element Method for Three-Dimensional Crack Modelling
,”
Int. J. Numer. Methods Eng.
,
48
(
11
), pp.
1549
1570
.
22.
Moës
,
N.
,
Gravouil
,
A.
, and
Belytschko
,
T.
, 2002, “
Non-Planar 3D Crack Growth by the Extended Finite Element and Level Sets Part I: Mechanical Model
,”
Int. J. Numer. Methods Eng.
,
53
(
11
), pp.
2549
2568
.
23.
Stolarska
,
M.
,
Chopp
,
D. L.
,
Moës
,
N.
, and
Belytschko
,
T.
, 2001,
Modelling Crack Growth by Level Sets in the Extended Finite Element Method
,
Int. J. Numer. Methods Eng.
,
51
, pp.
943
960
.
24.
Gravouil
,
A.
,
Moës
,
N.
, and
Belytschko
,
T.
, 2002, “
Non-Planar 3D Crack Growth by the Extended Finite Element and Level Sets Part II: Level Set Update
,
Int. J. Numer. Methods Eng.
,
53
(
11
), pp.
2569
2586
.
25.
Babuška
,
I.
,
Caloz
,
G.
, and
Osborn
,
J.
, 1994, “
Special Finite Element Methods for a Class of Second Order Elliptic Problems With Rough Coefficients
,”
SIAM J. Numer. Anal.
,
31
, pp.
945
981
.
26.
Liu
,
W. K.
,
Jun
,
S.
,
Li
,
S.
,
Adee
,
J.
, and
Belytschko
,
T.
, 1995, “
Reproducing Kernel Particle Methods for Structural Mechanics
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
1655
1679
.
27.
Chen
,
J.-S.
,
Pan
,
C.
,
Roque
,
C. M.O. L.
, and
Wang
,
H.-P.
, 1998,
A Lagrangian Reproducing Kernel Particle Method for Metal Forming Analysis
,”
Comput. Mech.
,
22
, pp.
289
307
.
28.
Duarte
,
C. A.
, and
Oden
,
J. T.
, 1996, “
An h-p Adaptive Methods Using Clouds
,”
Comput. Methods Appl. Mech. Eng.
,
139
, pp.
237
262
.
29.
Belytschko
,
T.
,
Krongauz
,
Y.
,
Organ
,
D.
Fleming
,
M.
, and
Krysl
,
P.
, 1996, “
Meshless Methods: An Overview and Recent Developments
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–2
), pp.
3
47
.
30.
Lucy
,
L.
, 1977, “
A Numerical Approach to Testing the Fission Hypothesis
,”
Astron. J.
,
82
, pp.
1013
1024
.
31.
Randles
,
P. W.
, and
Libersky
,
L. D.
, 1996, “
Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
, pp.
375
408
.
32.
Nayroles
,
B.
,
Touzot
,
G.
, and
Villon
,
P.
, 1992, “
Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements
,”
Comput. Mech.
,
10
, pp.
307
318
.
33.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
, 1994, “
Element-Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
229
256
.
34.
Krongauz
,
Y.
, and
Belytschko
,
T.
, 1996, “
Enforcement of Essential Boundary Conditions in Meshless Approximations Using Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
131
, pp.
133
145
.
35.
Lu
,
Y. Y.
,
Belytschko
,
T.
, and
Gu
,
L.
, 1994, “
A New Implementation of the Element-Free Galerkin
,”
Comput. Methods Appl. Mech. Eng.
,
113
, pp.
397
414
.
36.
Gunter
,
F. C.
, and
Liu
,
W. K.
, 1998, “
Implementation of Boundary Conditions for Meshless Methods
,”
Comput. Methods Appl. Mech. Eng.
,
163
, pp.
205
230
.
37.
Chen
,
J. -S.
, and
Wang
,
H.-P.
, 2000, “
New Boundary Condition Treatments for Meshless Computation of Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
187
(
7
), pp.
441
468
.
38.
Kantorovich
,
L. V.
, and
Krylov
,
V. I.
, 1958,
Approximate Methods of Higher Analysis
,
Interscience Publishers
,
New York
.
39.
de Boor
,
C.
, 1993, “
B(asic) Spline Basics
Fundamental Developments of Computer-Aided Geometric Design
,
L.
Piegl
, ed.,
Academic Press
,
New York
.
40.
Sabin
,
M. A.
, 1997, “
Spline Finite Elements
,” Ph.D. thesis, Leeds University, UK.
41.
Luft
,
B.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2008, “
Geometrically Adaptive Numerical Integration
,”
Proceedings of 2008 ACM Symposium on Solid and Physical Modeling
,
Stony Brook
,
NY
, pp.
147
157
.
42.
Rvachev
,
V. L.
, 1982,
Theory of R-functions and Some Applications
, Naukova Dumka, Kiev (in Russian).
43.
Shapiro
,
V.
,
Tsukanov
,
I.
,
Rvachev
,
V. L.
,
Sheiko
,
T. I.
, 2000, “
On Completeness of RFM Solution Structures
,”
Comput. Mech.
,
25
, pp.
305
317
.
44.
Rvachev
,
V. L.
,
Sheiko
,
T. I.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2001, “
Transfinite Interpolation Over Implicitly Defined Sets
,”
Comput. Aided Geom. Des.
,
18
(
4
), pp.
195
220
.
45.
Rvachev
,
V. L.
, and
Sheiko
,
T. I.
, 1996, “
R-Functions in Boundary Value Problems in Mechanics
,”
Appl. Mech.
,
48
, pp.
151
188
.
46.
Tsukanov
,
I.
, and
Posireddy
,
S. R.
, “
Hybrid Method of Engineering Analysis: Combining Meshfree Method With Distance Fields and Collocation Technique
,”
J. Comput. Inf. Sci. Eng.
(in press).
47.
Freytag
,
M.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2006, “
Field Modeling With Sampled Distances
,”
CAD
,
38
(
2
), pp.
87
100
.
48.
Kumar
,
A.V.
,
Padmanabhan
,
S.
, and
Burla
,
R.
, 2008, “
Implicit Boundary Method for Finite Element Analysis Using Non-Conforming Mesh or Grid
,”
Int. J. Numer. Methods Eng.
,
74
(
9
), pp.
1421
1447
.
49.
Leymarie
,
F.
, and
Levine
,
M. D.
, 1992, “
Fast Raster Scan Distance Propagation on the Discrete Rectangular Lattice
,”
Comput. Vis., Graph. Image Process.
,
55
(
1
), pp.
84
94
.
50.
Cuisenaire
,
O.
, 1999, “
Distance Transformations: Fast Algorithms and Applications to Medical Image Processing
,” Ph.D. thesis, Universite Catolique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
51.
Chiang
,
C.-S.
, 1992, “
The Euclidean Distance Transform
,” Ph.D. thesis, Computer Sciences, Purdue University, West Lafayette, IN.
52.
Intact Solutions, LLC, “
FieldMagic
,” http://sal-cnc.me.wisc.eduhttp://sal-cnc.me.wisc.edu
53.
Tsukanov
,
I.
, and
Shapiro
,
V.
, 2002, “
The Architecture of SAGE—A Meshfree System Based on RFM
,”
Eng. Comput.
,
18
(
4
), pp.
295
311
.
54.
Scan&Solve for Rhino, Intact Solutions, LLC, www.scanandsolve.com
55.
Bathe
,
K. J.
, 1982,
Finite Element Procedures in Engineering Analysis
,
1st ed.
,
Prentice-Hall, Inc.
,
New Jersey
.
56.
Chen
,
J. S.
,
Roque
,
C. M.
,
Pan
,
C.
, and
Button
,
S. T.
, 1998, “
Analysis of Metal Forming Process Based on Meshless Method
,”
J. Mater. Process. Technol.
,
80–81
(
1
), pp.
642
646
.
57.
Chen
,
J. S.
,
Pan
,
C.
, and
Wu
,
C. T.
, 1997, “
Large Deformation Analysis of Rubber Based on a Reproducing Kernel Particle Method
,”
Comput. Mech.
,
19
(
3
), pp.
211
227
.
58.
Chen
,
J. S.
,
Pan
,
C.
,
Cheng
,
T. W.
, and
Liu
,
W. K.
, 1996, “
Reproducing Kernel Particle Methods for Large Deformation Analysis of Non-Linear Structures
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
195
227
.
59.
Rvachev
,
V. L.
,
Kurpa
,
L. V.
,
Nasriddinov
,
Kh. F.
, and
Shevchenko
,
A. N.
, 1987, “
The R-Function Method in Problems of Nonlinear Deformation of Plates
,”
Int. Appl. Mech.
,
23
(
9
), pp.
861
866
.
60.
Lyubitskaya
,
E. I.
,
Kurpa
,
L. V.
, and
Morachkovskaya
,
I. O.
, 2010, “
The r-Function Method Used to Solve Nonlinear Bending Problems for Orthotropic Shallow Shells on an Elastic Foundation
,”
Int. Appl. Mech.
,
46
(
6
), pp.
660
668
.
61.
Lee
,
N. -S.
, and
Bathe
,
K.-J.
, 1994, “
Error Indicators and Adaptive Remeshing in Large Deformation Finite Element Analysis
,”
Finite Elem. Anal. Des.
,
16
(
2
), pp.
99
139
.
62.
Shapiro
,
V.
, and
Tsukanov
,
I.
, 1999, “
Meshfree Simulation of Deforming Domains
,”
CAD
,
31
(
7
), pp.
459
471
.
63.
Chen
,
J.
,
Shapiro
,
V.
,
Suresh
,
K.
, and
Tsukanov
,
I.
, 2007, “
Shape Optimization With Topological Changes and Parametric Control
,”
Int. J. Numer. Methods Eng.
,
71
(
3
), pp.
313
346
.
64.
Wriggers
,
P.
, 2002,
Computational Contact Mechanics
,
Wiley
,
New York
.
65.
Williams
,
J.
, and
O’Connor
,
R.
, 1999, “
Discrete Element Simulation and the Contact Problem
,”
Arch. Comput. Methods Eng.
,
6
, pp.
279
304
.
66.
Hallquist
,
J. O.
,
Goudreau
,
G. L.
, and
Benson
,
D. J.
, 1985, “
Sliding Interfaces With Contact-Impact in Large-Scale Lagrangian Computations
,”
Comput. Methods Appl. Mech. Eng.
,
51
, pp.
107
137
.
67.
Parisch
,
H.
, 1989, “
A Consistent Tangent Stiffness Matrix for Three-Dimensional Non-Linear Contact Analysis
,”
Int. J. Numer. Methods Eng.
,
28
, pp.
1803
1812
.
68.
Wriggers
,
P.
, and
Simo
,
J. C.
, 1985, “
A Note on Tangent Stiffness for Fully Nonlinear Contact Problems
,”
Commun. Appl. Numer. Methods
,
1
, pp.
199
203
.
69.
Wriggers
,
P.
,
Vu
,
V. T.
, and
Stein
,
E.
, 1990, “
Finite Element Formulation of Large Deformation Impact-Contact Problems With Friction
,”
Comput. Struct.
,
37
, pp.
319
331
.
70.
Gallego
,
F. J.
, and
Anza
,
J. J.
, 1989, “
A Mixed Finite Element Model for the Elastic Contact Problem
,”
Int. J. Numer. Methods Eng.
,
28
, pp.
1249
1264
.
71.
Papadopoulous
,
P.
, and
Talyor
,
R. L.
, 1992, “
A Mixed Formulation for the Finite Element Solution of Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
94
, pp.
373
389
.
72.
Simo
,
J. C.
,
Wriggers
,
P.
, and
Talyor
,
R. L.
, 1985, “
A Perturbed Lagrangian Formulation for the Finite Element Solution of Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
50
, pp.
163
180
.
73.
Bernardi
,
C.
,
Maday
,
Y.
, and
Patera
,
A. T.
, “
A New Nonconforming Approach to Domain Decomposition: The Mortar Element Method
,”
Nonlinear Partial Differential Equations and Their Applications
,
College de France Seminar
, Vol.
11
, pp.
1989
1991
.
74.
Belgacem
,
F. B.
, 1999, “
The Mortar Finite Element Method With Lagrange Multipliers
,”
Numerische Mathematik
,
84
(
2
), pp.
173
197
.
75.
McDevitt
,
T. W.
, and
Laurson
,
T. A.
, 2000, “
A Mortar-Finite Element Formulation for Frictional Contact Problems
,”
Int. J. Numer. Methods Eng.
,
48
(
10
), pp.
1525
1547
.
76.
Padmanabhan
,
V.
, and
Laursen
,
T. A.
, 2001, “
A Framework for Development of Surface Smoothing Procedures in Large Deformation Frictional Contact Analysis
,”
Finite Elem. Anal. Des.
,
37
, pp.
173
198
.
77.
El-Abbasi
,
N.
,
Meguid
,
S. A.
, and
Czekanski
,
A.
, 2001, “
On the Modelling of Smooth Contact Surfaces Using Cubic Splines
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
953
967
.
78.
Rvachev
,
V. L.
, and
Sinekop
,
N. S.
, 1990,
R-Functions Method in Problems of the Elasticity and Plasticity Theory
,
Naukova Dumka
,
Kiev
(in Russian).
79.
Guangyao
,
L.
, and
Belytschko
,
T.
, 2001, “
Element-Free Galerkin Method for Contact Problems in Metal Forming Analysis
,”
Eng. Comput.
,
18
(
1/2
), pp.
62
78
.
80.
Belytschko
,
T.
, and
Fleming
,
M.
, 1999, “
Smoothing, Enrichment and Contact in the Element-Free Galerkin Method
,”
Comput. Struct.
,
71
, pp.
173
195
.
81.
Chen
,
J. S.
, and
Wang
,
H. P.
, 2000, “
New Boundary Condition Treatments in Meshfree Computation of Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
187
(
3–4
), pp.
441
468
.
82.
Campbell
,
J.
,
Vignjevic
,
R.
, and
Libersky
,
L.
, 2000, “
A Contact Algorithm for Smoothed Particle Hydrodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
184
, pp.
49
65
.
83.
Fernandez-Mendez
,
S.
, and
Huerta
,
A.
, 2004, “
Imposing Essential Boundary Conditions in Mesh-Free Methods
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
12–14
), pp.
1257
1275
.
84.
Grishin
,
A.
, 2010, “
A Mesh-Free Finite Element Solution for Unilateral Contact Problems
,” Doctoral thesis, Arizona State University, Tempe, AZ.
85.
Lysenko
,
M.
, 2011, “
Fourier Collision Detection
,” Tech report 2011-1, Spatial Automation Laboratory,
University of Wisconsin—Madison
.
86.
Jackson
,
T. R.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
, 1998, “
Modeling and Designing Components With Locally Controlled Composition
,”
Proceedings of Solid Freeform Fabrication Symposium
,
Austin, TX
.
87.
Hua
,
J.
,
He
,
Y.
, and
Qin
,
H.
, 2005, “
Trivariate Simplex Splines for Inhomogeneous Solid Modeling in Engineering Design
,”
ASME J. Comput. Inform. Sci. Eng.
,
5
, pp.
149
157
.
88.
Yang
,
P.
, and
Qian
,
X.
, 2007, “
A B-Spline-Based Approach to Heterogeneous Objects Design and Analysis
,”
CAD
,
39
, pp.
95
111
.
89.
Markworth
,
A. J.
, and
Saunders
,
J. H.
, 1995, “
A Model of Structure Optimization for a Functionally Graded Material
,”
Mat. Lett.
,
22
, pp.
103
107
.
90.
Samanta
,
K.
, and
Koc
,
B.
, 2004, “
Heterogeneous Object Design With Material Feature Blending
,”
Comput.-Aided Des. Appl.
,
1
(
1–4
), pp.
429
439
.
91.
Biswas
,
A.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2004, “
Heterogeneous Material Modeling With Distance Fields
,”
Comput. Aided Geom. Des.
,
21
(
3
), pp.
215
242
.
92.
Tsukanov
,
I.
, and
Shapiro
,
V.
, 2005, “
Meshfree Modeling and Analysis of Physical Fields in Heterogeneous Media
,”
Adv. Comput. Math.
,
23
(
1–2
), pp.
95
124
.
93.
Biswas
,
A.
,
Fenves
,
S. J.
,
Shapiro
,
V.
, and
Sriram
,
R.
, 2008, “
Representation of Heterogeneous Material Properties in the Core Product Model
,”
Eng. Comput.
,
24
, pp.
43
58
.
94.
Gay
,
D.
, 2003,
Composite Materials: Design and Applications
,
CRC Press
,
New York
.
95.
Shapiro
,
V.
, 2007, “
Semi-Analytic Geometry With R-Functions
,
Acta Numerica
, pp.
239
303
.
96.
Kaw
,
A. K.
, 2006,
Mechanics of Composite Materials
, Mechanical Engineering Series,
Taylor & Francis
,
London
.
97.
Hamila
,
N.
,
Boisse
,
P.
Sabourin
,
F.
, and
Brunet
,
M.
, 2009, “
A Semi-Discrete Shell Finite Element for Textile Composite Reinforcement Forming Simulation
,”
Int. J. Numer. Methods Eng.
,
79
(
12
), pp.
1443
1466
.
98.
Kim
,
H. J.
, and
Swan
,
C. C.
, 2003, “
Voxel-Based Meshing and Unit-Cell Analysis of Textile Composites
,”
Int. J. Numer. Methods Eng.
,
56
(
7
), pp.
977
1006
.
99.
Fish
,
J.
, and
Yuan
,
Z.
, 2005, “
Multiscale Enrichment Based on Partition of Unity
,”
Int. J. Numer. Methods Eng.
,
62
(
10
), pp.
1341
1359
.
100.
Fish
,
J.
, and
Yu
,
Q.
, 2001, “
Multiscale Damage Modelling for Composite Materials: Theory and Computational Framework
,”
Int. J. Numer. Methods Eng.
,
52
(
1–2
), pp.
161
191
.
101.
Kim
,
D.-J.
,
Pereira
,
J. P. A.
, and
Duarte
,
C. A.
, 2009, “
Analysis of Three-Dimensional Fracture Mechanics Problems: A Two-Scale Approach Using Coarse Generalized Fem Meshes
,”
Int. J. Numer. Methods Eng.
,
81
(
3
), pp.
335
365
.
102.
Tsukanov
,
I.
, and
Shapiro
,
V.
, 2007, “
Adaptive Multiresolution Refinement With Distance Fields
,”
Int. J. Numer. Methods Eng.
,
72
(
11
), pp.
1355
1386
.
103.
Forsey
,
D. R.
, and
Bartels
R. H.
, 1988, “
Hierarchical B-Spline Refinement
,”
Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques
,
ACM Press
, pp.
205
212
.
104.
Dumont
,
S.
,
Goubet
,
O.
, Ha-
Duong
,
T.
, and Pierre Villon, 2006, “
Meshfree Methods and Boundary Conditions
,”
Int. J. Numer. Methods Eng.
,
67
, pp.
989
1011
.
105.
Glowinski
,
R.
,
Lawton
,
W. M.
,
Ravachol
,
M.
, and
Tenenbaum
,
E.
, 1990, “
Wavelet Solutions of Linear and Nonlinear Elliptic, Parabolic and Hyperbolic Problems in One Space Dimension
,”
Computing Methods in Applied Sciences and Engineering
,
R.
Glowinski
, and
A.
Lichnewsky
, eds.,
SIAM
,
Philadelphia
.
106.
Li
,
S.
, and
Liu
,
W. K.
, 2002, “
Meshfree and Particle Methods and Their Applications
,”
Appl. Mech. Rev.
,
55
(
1
), pp.
1
34
.
107.
Rvachev
,
V. L.
,
Sheiko
,
T. I.
, and
Shapiro
,
V.
, 1999, “
The R-Function Method in Boundary-Value Problems With Geometric and Physical Symmetry
,”
J. Math. Sci.
,
97
(
1
), pp.
3888
3899
.
108.
Hansen
,
A. C.
, and
Garnich
,
M. R.
, 1995, “
A Multicontinuum Theory for Structural Analysis of Composite Material Systems
,”
Composites Eng.
,
5
(
9
), pp.
1091
1103
.
109.
Hansen
,
A. C.
, and
Garnich
,
M. R.
, 1997, “
A Multicontinuum Theory for Thermal-Elastic Finite Element Analysis of Composite Materials
,”
J. Composite Mater.
,
31
, pp.
71
86
.
110.
Key
,
C. T.
,
Schumacher
,
S.
, and
Hansen
,
A. C.
, 2007, “
Progressive Failure Modeling of Woven Fabric Composite Materials Using Multicontinuum Theory
,”
Composites Part B
,
38
, pp.
247
257
.
111.
Cao
,
G.
, 2004,
Nanostructures & Nanomaterials: Synthesis, Properties & Applications
,
Imperial College Press
,
London
.
112.
Balbuena
,
P. B.
, and
Seminario
,
J. M.
, 2007, “
Nanomaterials: Design and Simulation
,”
Theoretical and Computational Chemistry
,
Elsevier
,
Amsterdam
.
113.
Zhang
,
S.
,
Khare
,
R.
,
Lu
,
Q.
, and
Belytschko
,
T.
, 2007, “
A Bridging Domain and Strain Computation Method for Coupled Atomistic-Continuum Modelling of Solids
,”
Int. J. Numer. Methods Eng.
,
70
(
8
), pp.
913
933
.
114.
Liu
,
W. K.
,
Karpov
,
E. G.
, and Park, H. S., 2006,
Nano Mechanics and Materials: Theory, Multiscale Methods and Applications
,
Wiley
,
New York
.
115.
Tang
,
Z.
, and
Aluru
,
N. R.
, 2008, “
Multiscale Mechanical Analysis of Silicon Nanostructures by Combined Finite Temperature Models
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
41–42
), pp.
3215
3224
.
116.
Saether
,
E.
,
Yamakov
,
V.
, and
Glaessgen
,
E.
, 2008, “
New Developments in the Embedded Statistical Coupling Method: Atomistic/Continuum Crack Propagation
,”
Proceedings of 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit
,
Schaumburg, IL
.
117.
Felippa
,
C. A.
, and
Park
,
K. C.
, 2004, “
Synthesis Tools for Structural Dynamics and Partitioned Analysis of Coupled Systems
,
Multi-Physics and Multi-Scale Computer Models in Nonlinear Analysis and Optimal Design of Engineering Structures under Extreme Conditions (Proceedings NATO-ARW PST ARW980268)
,
A.
Ibrahimbegovic
, and
B.
Brank
, eds.,
Ljubliana, Slovenia
,
IOS Press
, pp.
50
100
.
118.
Park
,
K. C.
,
Felippa
,
C. A.
, and
Rebel
,
G.
, 2002, “
A Simple Algorithm for Localized Construction of Non-Matching Structural Interfaces
,”
Int. J. Numer. Methods Eng.
,
53
, pp.
1261
1285
.
119.
Felippa
,
C. A.
,
Ross
,
M. R.
,
Sprague
,
M. A.
and
Park
,
K. C.
, 2009, “
Treatment of Acoustic Fluid-Structure Interaction by Localized Lagrange Multipliers and Comparison to Alternative Interface Coupling Methods
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
986
1005
.
120.
Felippa
,
C. A.
,
Park
,
K. C.
, and
Ross
,
M. R.
, 2010, “
A Classification of Interface Treatments for FSI
,”
Fluid Structure Interaction, Lecture Notes in Computational Science and Engineering
, Vol.
73
, chapter,
Springer-Verlag
, pp.
27
52
.
121.
Legay
,
A.
,
Chessa
,
J.
, and
Belytschko
,
T.
, 2006, “
An Eulerian–Lagrangian Method for Fluid-Structure Interaction Based on Level Sets
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
17–18
), pp.
2070
2087
.
122.
Wang
,
H.
,
Chessa
,
J.
,
Liu
,
W. K.
, and
Belytschko
,
T.
, 2008, “
The Immersed/Fictitious Element Method for Fluid-Structure Interaction: Volumetric Consistency, Compressiblity and Thin Members
,”
Int. J. Numer. Methods Eng.
,
74
(
1
), pp.
32
55
.
123.
Casadei
,
F.
, and
Leconte
,
N.
, 2010, “
Coupling Finite Elements and Finite Volumes by Lagrange Multipliers for Explicit Dynamic Fluid Structure Interaction
,
Int. J. Numer. Methods Eng.
,
86
(
1
), pp.
1
17
.
124.
Peskin
,
C. S.
, 2002, “
The Immersed Boundary Method
, Acta Numerica, pp.
479
517
.
125.
Osher
,
S.
, and
Fedkiw
,
R. P.
, 2003,
Level Set Methods and Dynamic Implicit Surfaces
, Applied Mathematical Sciences,
Springer
,
New York
.
126.
Fedkiw
,
R.
,
Aslam
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
, 1999, “
A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)
,”
J. Comput. Phys.,
152
, pp.
457
492
.
127.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and von
Loebbecke
,
A.
, 2008, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
, pp.
4825
4852
.
128.
Lew
,
A. J.
, and
Buscaglia
,
G. C.
, 2008, “
A Discontinuous-Galerkin-Based Immersed Boundary Method
,”
Int. J. Numer. Methods Eng.
,
76
(
4
), pp.
427
454
.
129.
Wang
,
H.
, and
Belytschko
,
T.
, 2009, “
Fluid-Structure Interaction by the Discontinuous-Galerkin Method for Large Deformations
,
Int. J. Numer. Methods Eng.
,
77
(
1
), pp.
30
49
.
130.
Rüberg
,
T.
, and
Cirak
,
F.
, 2011, “
An Immersed Finite Element Method With Integral Equation Correction
,
Int. J. Numer. Methods Eng.
86
(
1
), pp.
93
114
.
131.
Zhang
,
Y. F.
,
Liu
,
W. K.
, and
Jun
,
S.
, 1995, “
Reproducing Kernel Particle Methods
,”
Int. J. Numer. Methods Fluids
,
20
, p.
439
.
132.
Sethian
,
J. A.
, 1999,
Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Sciences
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
133.
Tsukanov
,
I.
,
Shapiro
,
V.
, and
Zhang
,
S.
, 2003, “
A Meshfree Method for Incompressible Fluid Dynamics Problems
,
Int. J. Numer. Methods Eng.
,
58
(
1
), pp.
127
158
.
134.
Zhang
,
L. T.
,
Liu
,
W. K.
,
Li
,
S. F.
,
Qian
,
D.
, and
Hao
,
S.
, 2002, “
Survey of Multi-Scale Meshfree Particle Methods
,”
Lect. Notes Comput. Sci. Eng.
,
26
, pp.
441
458
.
You do not currently have access to this content.