One of the hallmarks of engineering design is the design synthesis phase where the creativity of the designer most prominently comes into play as solutions are generated to meet underlying needs. Over the past decades, methodologies for generating concepts and design solutions have matured to the point that computation-based synthesis provides a means to explore a wider variety of solutions and take over more tedious design tasks. This paper reviews advances in function-based, grammar-based, and analogy-based synthesis approaches and their contributions to computational design synthesis research in the last decade.

References

References
1.
Chakrabarti
,
A.
,
Morgenstern
,
S.
, and
Knaab
,
H.
, 2004, “
Identification and Application of Requirements and Their Application on the Design Process: A Protocol Study
,”
Res. Eng. Des.
,
15
(
1
), pp.
22
39
.
2.
Pahl
,
G.
, and
Beitz
,
W.
,
Engineering Design: A Systematic Approach
(
Springer Verlag
,
London
, 1996).
3.
Otto
,
K.
, and
Wood
,
K. L.
,
Product Design: Techniques in Reverse Engineering, Systematic Design, and New Product Development
(
Prentice-Hall
,
New York
, 2001).
4.
Ullman
,
D. G.
, 2002,
The Mechanical Design Process
,
3rd ed.
,
McGraw-Hill
,
New York
.
5.
Ulrich
,
K. T.
and
Eppinger
,
S. D.
, 2004,
Product Design and Development
,
3rd ed.
,
McGraw-Hill/Irwin
,
Boston
.
6.
Cutherell
,
D.
, 1996, “
Chapter 16: Product Architecture
,”
The PDMA Handbook of New Product Development
,
M.
Rosenau
, Jr.
, ed.,
Wiley
,
New York
.
7.
Hubka
,
V.
, and Ernst
Eder
,
W.
,
Theory of Technical Systems
(
Springer-Verlag
,
Berlin
, 1984).
8.
Otto
,
K.
, and
Wood
,
K.
, 1996, “
A Reverse Engineering and Redesign Methodology for Product Evolution
,”
Proceedings of the 1996 ASME Design Theory and Methodology Conference
, 96-DETC/DTM-1523,
Irvine, CA
.
9.
Otto
,
K.
, and
Wood
,
K.
, 1997, “
Conceptual and Configuration Design of Products and Assemblies
,”
ASM Handbook, Materials Selection and Design, ASM International
.
10.
Pimmler
,
T.
, and
Eppinger
,
S.
, 1994, “
Integration Analysis of Product Decompositions
,”
Proceedings of the ASME Design Theory and Methodology Conference
, DE-Vol. 68.
11.
Schmidt
,
L.
, and
Cagan
,
J.
, 1995, “
Recursive Annealing: A Computational Model for Machine Design
,”
Res. Eng. Des.
,
7
(
2
), pp.
102
125
.
12.
Shimomura
,
Y.
,
Tanigawa
,
S.
,
Takeda
,
H.
,
Umeda
,
Y.
, and
Tomiyama
,
T.
, 1996, “
Functional Evaluation Based on Function Content
,”
Proceedings of the 1996 ASME Design Theory and Methodology Conference
, 96-DETC/DTM-1532,
Irvine, CA
.
13.
Radcliffe
,
D.
, and
Lee
,
T. Y.
, 1989, “
Design Methods Used by Undergraduate Engineering Students
,”
Des. Stud.
,
10
(
4
), pp.
199
207
.
14.
Cross
,
N.
, 1994,
Engineering Design Methods: Strategies for Product Design
,
2nd ed.
,
John Wiley and Sons
,
Chichester, UK
.
15.
Ivashkov
,
M.
, 2004, “
ACCEL: A Tool Supporting Concept Generation in the Early Design Phase
,” Ph. D. thesis, The Eindhoven University of Technology, Eindhoven, The Netherlands.
16.
Wodehouse
,
A.
,
Grierson
,
H.
,
Ion
,
W. J.
,
Juster
,
N.
,
Lynn
,
A.
, and
Stone
,
A. L.
, 2004, “
Tikiwiki: A Tool to Support Engineering Design Students in Concept Generation
,”
International Engineering and Product Design Education Conference
,
Delft, Netherlands
.
17.
Sridharan
,
P.
, and
Campbell
,
M.
, 2005, “
A Study on the Grammatical Construction of Function Structures
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
3
), pp.
139
160
.
18.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment for Probabilistic Design
,”
J. Mech. Des.
,
126
, pp.
225
233
.
19.
Chakrabarti
,
A.
, 1998, “
Supporting two Views of Function in Mechanical Design, Workshop on Functional Modeling and Teleological Reasoning
,”
15th AAAI National Conference on Artificial Intelligence
,
WI
.
20.
Chandrasekaran
,
B.
, and
Josephson
,
J. R.
, 2000, “
Function in Device Representation
,”
Eng. Comput.
,
16
(
3–4
), pp.
162
177
.
21.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
, 2007,
Engineering Design: A Systematic Approach
,
3rd ed.
,
Springer Verlag
, London.
22.
Otto
,
K.
, and
Wood
,
K.
,
Product Design: Techniques in Reverse Engineering, Systematic Design, and New Product Development
(
Prentice-Hall
,
New York
, 2001).
23.
Miles
,
L.
,
Techniques of Value Analysis and Engineering
(
McGraw-Hill
,
New York
, 1961).
24.
Dieter
,
G.
, 1991,
Engineering Design: A Materials and Processing Approach
,
2nd ed.
,
McGraw-Hill
,
New York
.
25.
Ullman
,
D. G.
,
The Mechanical Design Process
(
McGraw-Hill
,
New York
, 2002).
26.
Cutherell
,
D.
,
Chapter 16: Product Architecture
(
Wiley
,
New York
, 1996).
27.
Rodenacker
,
W.
,
Methodisches Konstruieren (Methodical Design)
(
Springer
,
New York
, 1971).
28.
Roth
,
K.
,
Konstruieren mit Konstrktionskatalogen (Design with Construction Catalogs)
(
Springer Verlag
,
Berlin
, 1982).
29.
Koller
,
R.
,
Konstruktionslehre für den Maschinenbau (Mechanical Engineering Design)
, (
Springer-Verlag
,
Berlin
, 1985).
30.
Pahl
,
G.
, and
Beitz
,
W.
, 1984, Engineering Design: A Systematic Approach Design Council, London.
31.
Hundal
,
M.
, 1990, “
A Systematic Method for Developing Function Structures, Solutions and Concept Variants
,”
Mech. Mach. Theory
,
25
(
3
), pp.
243
256
.
32.
Little
,
A.
,
Wood
,
K.
, and
McAdams
,
D.
, 1997, “
Functional Analysis: A Fundamental Empirical Study for Reverse Engineering, Benchmarking and Redesign
,”
Proceedings of the 1997 Design Engineering Technical Conferences
, 97-DETC/DTM-3879,
Sacramento, CA
.
33.
Szykman
,
S.
,
Racz
,
J.
, and
Sriram
,
R.
, 1999, “
The Representation of Function in Computer-Based Design
,”
ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, DETC99/DTM-8742,
Las Vegas, NV
.
34.
Stone
,
R.
, and
Wood
,
K.
, 2000, “
Development of a Functional Basis for Design
,”
J. Mech. Des.
,
122
(
4
), pp.
359
370
.
35.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
36.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
, 2001, “
A Scheme for Functional Reasoning in Mechanical Conceptual Design
,”
Des. Stud.
,
22
(
6
), pp.
493
517
.
37.
Chakrabarti
,
A.
, 1997, “
Deep Understanding and Problem Solving Using Function Structures: A Case Study
,”
Proceedings International Conference in Engineering Design, Tampere
, Vol.
3
, pp.
71
76
.
38.
Andreasen
,
M. M.
, 1980, “
Syntesemetoder på systemgrundlag
,” Ph.D. thesis in Lunds Tekniska Högskola.
39.
Freeman
,
P.
, and
Newell
,
A
, 1971, “
A Model for Functional Reasoning in Design
,”
Advanced Papers IJCAI’71
,
London
, pp.
621
640
.
40.
Bracewell
,
R. H.
,
Chaplin
,
R. V.
,
Langdon
,
P. M.
,
Li
,
M.
,
Oh
,
V. K.
,
Sharpe
,
J. E. E.
, and
Yan
,
X. T.
, “
Integrated Platform for AI Support of Complex Design (Part I): Rapid Development of Schemes from First Principles
,”
CACD’95
,
Springer-Verlag
,
Lancaster
, 1995.
41.
Sturges
,
R. H.
, O’
Shaughnessy
,
K. O.
, and
Kilam
,
M. I.
, 1996, “
Computational Model for Conceptual Design Based on Extended Function Logic
,”
Artif. Intell. Eng. Des. Anal. Manuf.
, Vol.
10
(
4
), pp.
225
274
.
42.
Chakrabarti
A.
, and
Bligh
,
T. P.
, 1996,
An Approach to Functional Synthesis of Design Concepts: Theory, Application, and Emerging Research Issues
,
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
4
), pp.
313
331
.
43.
Liu
,
Y. C.
,
Chakrabarti
,
A.
, and
Bligh
,
T. P.
, 2000, “
A Computational Framework for Concept Generation and Exploration in Mechanical Design: Further Developments of FuncSION
,”
Artificial Intelligence in Design (AID’00)
,
J.
Gero
and
F.
Sudweeks
eds., pp.
499
519
.
44.
Gero
,
J. S.
, 1990, “
Design Prototypes: A Knowledge Representation Schema for Design
,” AI Mag.,
11
(
4
), pp.
26
36
.
45.
Goel
,
A. K.
, 1991, “
A Model Based Approach to Case Adaptation
,”
Proceedings 13th Annual Conference of the Cognitive Science Society
, Aug. 1991,
Chicago
, pp.
143
148
.
46.
Y.
Umeda
,
M.
Ishii
,
M.
Yoshioka
,
Y.
Shimomura
and
T.
Tomiyama
, 1996, “
Supporting Conceptual Design Based on the Function–Behaviour–State Modeler
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
, pp.
275
288
.
47.
Deng
,
Y.-M.
,
Britton
,
G. A.
, and
Tor
,
S. B.
, 2000, “
Constraint-Based Functional Design Verification for Conceptual Design
,”
Comput.-Aided Des.
,
32
, pp.
889
899
.
48.
Vargas-Hernandez
,
N.
, and
Shah
,
J. J.
, 2004, “
2nd-CAD: A Tool for Conceptual Systems Design in Electromechanical Domain
”,
ASME J. Comput. Inf. Sci. Eng.
,
4
(
1
), pp.
28
36
.
49.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
, 2005“
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
113
132
.
50.
Erden
,
M. S.
,
Komoto
,
H.
, Van
Beek
,
T. J.
, D’
Amelio
,
V.
,
Echavarria
,
E.
, and
Tomiyama
,
T.
, 2008, “
A Review of Functional Modeling: Approaches and Applications
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
147
169
.
51.
Chandrasekaran
,
B.
, 1994, “
Function Representation and Causal Processes
,”
Adv. Comput.
,
38
, pp.
73
143
.
52.
Chakrabarti
,
A.
, and
Blessing
,
L.
, 1996, “
Special Issue: Representing Functionality in Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
4
), pp.
251
253
.
53.
Winsor
,
J.
, and
MacCallum
,
K.
, 1994, “
A Review of Functionality Modelling in Design
,”
Knowl. Eng. Rev.
,
9
, pp.
163
199
.
54.
Stone
,
R. B.
, and
Chakrabarti
,
A.
, 2005, “
Special Issue: Engineering Applications of Representations of Function–Part 1
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
3
), pp.
137
137
.
55.
Far
,
B. H.
, and
Elamy
,
A. H.
, “
Functional Reasoning Theories: Problems and Perspectives
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
75
88
.
56.
Chakrabarti
,
A.
, ed.,
Design Synthesis: Issues, Understanding and Methods
(
Springer-Verlag
,
London
, 2002).
57.
Falkenhainer
,
B.
,
Forbus
,
K.
, and
Gentner
,
D.
, 1989, “
The Structure-Mapping Engine: Algorithms and Examples
,”
Artif. Intell.
,
41
(
1
), pp.
1
63
.
58.
Clement
,
J.
, 1988, “
Observed Methods for Generating Analogies in Scientific Problem Solving
,”
Cogn. Sci.
,
12
(
4
), pp.
563
586
.
59.
Clement
,
J.
, “
Creative Model Construction in Scientists and Students
:
The Role of Imagery, Analogy, and Mental Simulation
(
Springer
,
Dordrecht
, 2008).
60.
Christensen
,
B. T.
, and
Schunn
,
C. D.
, 2007, “
The Relationship of Analogical Distance to Analogical Function and Pre-Inventive Structure: The Case of Engineering Design
,”
Mem. Cognit.
,
35
(
1
), pp.
29
38
.
61.
Goel
,
A.
, and
Bhatta
,
S.
, 2004, “
Design Patterns: An Unit of Analogical Transfer in Creative Design
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
85
94
.
62.
Bohm
,
M.
,
Stone
,
R.
, and
Szykman
,
S.
, 2005, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
J. Comput. Inf. Sci. Eng.
,
5
(
4
), pp.
360
372
.
63.
Szykman
,
S.
,
Sriram
,
R.
, and
Regli
,
W.
, 2001, “
The Role of Knowledge in Next-generation Product Development Systems
,”
J. Comput. Inf. Sci. Eng.
,
1
(
1
), pp.
3
11
.
64.
Szykman
,
S.
,
Fenves
,
S.
,
Keirouz
,
W.
, and
Shooter
,
S.
, 2001, “
A Foundation for Interoperability in Next-Generation Product Development Systems
,”
Comput.-Aided Des.
,
33
(
7
), pp.
545
559
.
65.
Bohm
,
M.
,
Stone
,
R.
,
Simpson
,
T.
, and
Steva
,
E.
, 2008, “
Introduction of a Data Schema: To Support a Design Repository
,”
Comput.-Aided Des.
,
40
(
7
), pp.
801
811
.
66.
Bryant
,
C.
,
McAdams
,
D.
,
Stone
,
R.
,
Kurtoglu
,
T.
, and
Campbell
,
M.
, 2005, “
A Computational Technique for Concept Generation
,”
Proceedings of IDETC/CIE 2005
, DETC2005-85323,
Long Beach, CA
.
67.
Bryant
,
C.
,
Stone
,
R.
,
McAdams
,
D.
,
Kurtoglu
,
T.
, and
Campbell
,
M.
, 2005, “
Concept Generation from the Functional Basis of Design
,”
International Conference on Engineering Design, ICED 05
,
Melbourne, Australia
.
68.
Shooter
,
S.
,
Simpson
,
T.
,
Kumara
,
S.
,
Stone
,
R.
, and
Terpenny
,
J.
, 2005, “
Toward a Multi-Agent Information Management Infrastructure for Product Family Planning and Mass Customisation
,”
Int. J. Mass Customisation
,
1
(
1
), pp.
134
155
.
69.
Regli
,
W.
,
Kopena
,
J.
,
Grauer
,
M.
,
Simpson
,
T.
,
Stone
,
R.
,
Lewis
,
K.
,
Bohm
,
M.
,
Wilkie
,
D.
,
Piecyk
,
M.
, and
Osecki
,
J.
, 2010, “
Archiving the Semantics of Digital Engineering Artifacts: A Case Study
,”
AI Mag.
,
31
, pp.
37
50
.
70.
Bohm
,
M.
,
Vuchovich
,
J.
, and
Stone
,
R.
, 2007, “
An Open Source Application for Archiving Product Design Information
,”
Proceedings of DETC’07, DETC2007-35401
,
Las Vegas, NV
.
71.
Kurtoglu
,
T.
,
Campbell
,
M.
,
Bryant
,
C.
,
Stone
,
R.
, and
McAdams
,
D.
, 2009, “
A Component Taxonomy as a Framework for Computational Design Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
1
), p.
011007
.
72.
Bohm
,
M.
,
Vucovich
,
J.
, and
Stone
,
R.
, 2005, “
Capturing Creativity: Using a Design Repository to Drive Concept Innovation
,”
Proceedings of IDETC/CIE 2005, DETC2005-85105
,
Long Beach, CA
.
73.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
, 2008, “
Using a Design Repository to Drive Concept Generation
,”
J. Comput. Inf. Sci. Eng.
,
8
(
1
), pp.
014502
.
74.
Kurtoglu
,
T.
, and
Campbell
,
M.
, 2008, “
Automated Synthesis of Electromechanical Design Configurations from Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), pp.
83
104
.
75.
Kurtoglu
,
T.
,
Campbell
,
M.
,
Gonzalez
,
J.
,
Bryant
,
C.
,
Stone
,
R.
, and
McAdams
,
D.
, 2005, “
Capturing Empirically Derived Design Knowledge for Creating Conceptual Design Configurations
,”
Proceedings of IDETC/CIE 2005, DETC2005-84405
,
Long Beach, CA
.
76.
Chakrabarti
,
A.
,
Johnson
,
A. L.
, and
Kiriyama
,
T.
, 1997,
An Approach to Automated Synthesis of Solution Principles for Micro-Sensor Designs
,
Proceedings of the International Conference in Engineering Design, Tampere
, Vol.
2
, pp.
125
128
.
77.
Navinchandra
,
D.
,
Sycara
,
K. P.
, and
Narasimhan
,
S.
, 1991, “
A Transformational Approach to Case-Based Synthesis
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
5
, pp.
31
45
.
78.
Subramanian
,
D.
, and
Wang
,
C.-S.
, 1995, “
Kinematic Synthesis with Configuration Spaces
,”
Res. Eng. Des.
,
7
(
3
), pp.
193
213
.
79.
Williams
,
B. C.
, 1990, “
Interaction-Based Invention: Designing Novel Devices from First Principles
,”
AAAI-90 Proceedings Eighth National Conference on Artificial Intelligence
, Vol.
1
,
Boston, MA
.
80.
Palmer
,
R. S.
, and
Shapiro
,
V.
, 1993, “
Chain Models of Physical Behavior for Engineering Analysis and Design
,”
Res. Eng. Des.
,
5
, pp.
161
184
.
81.
Mittal
,
S.
,
Dym
,
C.
, and
Morjara
,
M.
, 1985, “
PRIDE: An Expert System for the Design of Paper Handling Systems
,”
IEEE Comput.
,
19
(
7
), pp.
102
114
.
82.
Chakrabarti
,
A.
, 2001, “
Improving Efficiency of Procedures for Computational Synthesis by Using Bidirectional Search
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
15
(
5
), pp.
67
80
.
83.
Liu
,
Y. C.
, and
Chakrabarti
,
A.
, 2010, “
Investigation of Design Heuristics for Pruning the Number of Mechanism Solutions in Computer-Based Conceptual Design
,”
2nd International Conference on Computer and Automation Engineering (ICCAE 2010)
, Feb.
26
28
, Singapore.
84.
Chakrabarti
,
A.
, and
Johnson
,
A. L.
, 1999, “
Detecting Side Effects in Solution Principles
,”
Procedings of the International Conference on Engineering Design (ICED99)
, Munich, Vol.
2
, pp.
661
666
.
85.
Langdon
,
P.
, and
Chakrabarti
,
A.
, 1999, “
Browsing a Large Solution Space in Breadth and Depth
,”
Proceedings of the International Conference on Engineering Design (ICED99), Munich
, Vol.
3
, pp.
1865
1868
.
86.
Ulrich
,
K. T.
, and
Seering
,
W. P.
, 1988, “
Function Sharing in Mechanical Design
,”
AAAI-88 Proceedings
, pp.
342
346
.
87.
Chakrabarti
,
A.
, 2004, “
A New Approach to Structure Sharing
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
1
), pp.
1
78
.
88.
Fricke
,
G.
, 1996, “
Successful Individual Approaches in Engineering Design
,”
Res. Eng. Des.
8
, pp.
151
165
.
89.
Liu
,
Y -C.
,
Chakrabarti
,
A.
, and
Bligh
,
T. P.
, 2003, “
Towards an Ideal Approach for Concept Generation
,”
Des. Stud.
,
24
(
4
), pp.
341
355
.
90.
Bryant
,
C.
,
Pieper
,
E.
,
Walther
,
B.
,
Kurtoglu
,
T.
,
Stone
,
R.
,
McAdams
,
D.
, and
Campbell
,
M.
, 2006, “
Software Evaluation of an Automated Concept Generator Design Tool
,”
Proceedings of the 2006 ASEE Annual Conference, ASEE-2006-1758
,
Chicago, IL
.
91.
Bryant
,
C.
,
McAdams
,
D.
,
Stone
,
R.
,
Kurtoglu
,
T.
, and
Campbell
,
M.
, 2006, “
A Validation Study of an Automated Concept Generator Design Tool
,”
Proceedings of IDETC/CIE 2006, DETC2006-99489
,
Philadelphia, PA
.
92.
Kurtoglu
,
T.
, and
Campbell
,
M.
, 2007, “
Exploring the Worth of Automatically Generated Design Alternatives Based on Designer Preferences
,”
International Conference on Engineering Design
,
Paris, France
.
93.
Gips
,
J.
, and
Stiny
,
G.
, 1980, “
Production Systems and Grammars: A Uniform Characterization
,”
Environ. Plann. B
,
7
, pp.
399
408
.
94.
Krishnamurti
,
R.
, and
Stouffs
,
R.
, 1993,
Spatial Grammars: Motivation, Comparison, and New Results
,
5th International Conference on Computer-Aided Architectural Design Futures
,
North-Holland Publishing Co.
,
Pittsburgh
, pp.
57
74
.
95.
Antonsson
,
E. K.
, and
Cagan
,
J.
, 2001,
Formal Engineering Design Synthesis
,
Cambridge University
,
Cambridge, England
, pp.
65
91
96.
Nagl
,
M.
, 1976, “
Formal Languages of Labeled Graphs
,”
J. Comput.
,
16
(
1–2
), pp.
113
137
.
97.
Chomsky
,
N.
, 1980,
Studies on Semantics in Generative Grammar
(
Walter de Gruyter
, New York, NY, 1980).
98.
Ehrig
,
H.
,
Kreowski
,
H. J.
,
Maggiolo-Schettini
,
A.
,
Rosen
,
B. K.
, and
Winkowski
,
J.
, 1981, “
Transformations of Structures—An Algebraic Approach
,”
J Math. Syst. Theory
,
14
(
4
), pp.
305
334
.
99.
Geiß
,
R.
,
Batz
,
G. V.
,
Grund
,
D.
,
Hack
,
S.
, and
Szalkowski
,
A.
, 2006, “
GrGen: A Fast SPO-Based Graph Rewriting Tool
,”
Graph Transformations
,
Springer
,
Berlin
, pp.
383
397
.
100.
Helms
,
B.
, and
Shea
,
K.
, 2010, “
Object-Oriented Concepts for Computational Design Synthesis
,”
11th International Design Conference DESIGN 2010
,
D.
Marjanović
,
M.
Štorga
,
N.
Pavković
, and
N.
Bojčetić
, eds.,.
Dubrovnik, Croatia
.
101.
Helms
,
B.
,
Shea
,
K.
, and
Hoisl
,
F.
, 2009, “
A Framework for Computational Design Synthesis Based on Graph-Grammars and Function-Behavior-Structure
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
San Diego
.
102.
Alber
,
R.
, and
Rudolph
,
S.
, 2003, “
‘43’—A Generic Approach for Engineering Design Grammars
,”
Proceedings AAAI Spring Symposium “Computational Synthesis,”
Stanford, CA
, AAAI Technical Report SS-03-02.
103.
Schäfer
,
J.
, and
Rudolph
,
S.
, 2005, “
Satellite Design by Design Grammars
,”
Aerosp. Sci. Technol.
,
9
(
1
), pp.
81
91
.
104.
Patel
,
J.
, and
Campbell
M.
I., 2010, “
An Approach to Automate and Optimize Concept Generation of Sheet Metal Parts by Topological and Parametric Decoupling
,”
ASME J. Mech. Des.
,”
132
(
5
), p.
051001
.
105.
Agu
,
D.
, and
Campbell
,
M. I.
, 2010, “
Automated Analysis of Product Disassembly to Determine Environmental Impact
,”
Int. J. Sustain. Des.
,
1
, pp.
241
256
.
106.
Brimble
,
R.
, and
Sellini
F.
, 2000,
The MOKA Modelling Language, Knowledge Engineering and Knowledge Management Methods
,
Models, and Tools (Lecture Notes in Computer Science)
Vol.
1937/2000
, pp.
95
120
.
107.
Kerzhner
,
A. A.
, and
Paredis
C. J. J.
, “
Using Domain Specific Languages to Capture Design Synthesis Knowledge for Model-Based Systems Engineering
,”
ASME 2009 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE2009
,
San Diego
, DETC2009-87286.
108.
Chau
,
H. H.
,
Chen
,
X. J.
,
McKay
,
A.
, and
de Pennington
,
A.
, 2004, “
Evaluation of a 3D Shape Grammar Implementation
,”
Design Computing and Cognition 04
,
J. S.
Gero
, ed.,
Kluwer Academic Publishers
,
Cambridge
, pp.
357
376
.
109.
Hoisl
,
F.
, and
Shea
,
K.
, 2011, “
An Interactive, Visual Approach to Developing and Applying Parametric 3D Spatial Grammars
”,
Artif. Intell. Eng. Des. Anal. Manuf.
,
25
(
4
), in press.
110.
McCormack
,
J. P.
, and
Cagan
,
J.
, 2002, “
Supporting Designer’s Hierarchies through Parametric Shape Recognition
,”
Environ. Plan. B: Plan. Des.
,
29
, pp.
913
931
.
111.
McCormack
,
J. P.
, and
J.
Cagan
, 2006, “
Curve-Based Shape Matching – Supporting Designers’ Hierarchies Through Parametric Shape Recognition of Arbitrary Geometry
,”
Environ. Plann. B
,
33
(
4
), pp.
523
540
.
112.
Jowers
,
I.
,
Hogg
,
D.
,
McKay
,
A.
,
Chau
,
H.
, and
de Pennington
,
A.
, 2010, “
Shape Detection With Vision: Implementing Shape Grammars in Conceptual Design
,”
Res. Eng. Des.
,
21
, pp.
235
247
.
113.
Heisserman
,
J.
,
Mattikalli
,
R.
, and
Callahan
,
S.
, 2004, “
A Grammatical Approach to Design Generation and its Application to Aircraft Systems
,”
Proceedings of Generative CAD Systems Symposium ’04
,
Pittsburgh, Pennsylvania
, July 12–14, 2004.
114.
Heisserman
,
J.
, 1994, “
Generative Geometric Design
,”
IEEE Comput. Graphics Appl.
,
14
(
2
), pp.
37
45
.
115.
Yogev
,
O.
,
Shapiro
,
A. A.
, and
Antonsson
,
E. K.
, 2009, “
Computational Evolutionary Embryogeny
,”
IEEE Trans. Evol. Comput.
,
14
(
2
), pp.
301
325
116.
Orsborn
,
S.
,
Boatwright
,
P.
, and
Cagan
,
J.
, 2008, “
Identifying Product Shape Relationships Using Principal Component Analysis
,”
Res. Eng. Des.
,
18
(
4
), pp.
181
196
.
117.
Orsborn
,
S.
,
Cagan
,
J.
, and
Boatwright
,
P.
, 2008, “
A Methodology for Creating a Statistically Derived Shape Grammar Composed of Non-Obvious Shape Chunks
,”
Res. Eng. Des.
,
18
(
4
), pp.
163
180
.
118.
Knight
,
T. W.
, 2000, “
Shape Grammars in Education and Practice: History and Prospects
,”
Int. J. Des. Comput.
,
2
.
119.
Gick
,
M. L.
, and
Holyoak
,
K. J.
, 1980, “
Analogical Problem Solving
,”
Cogn. Psychol.
,
12
, pp.
306
355
.
120.
Gordon
,
W. J. J.
,
Synectics
(
Harper & Row
,
NY
, 1961)
121.
Goel
,
A. K.
, 1997, “
Design, Analogy and Creativity
,”
IEEE Expert Intell. Syst. Appl.
,
12
, pp.
62
70
.
122.
Gentner
,
D.
, 1983, “
Structure-Mapping: A Theoretical Framework for Analogy
,”
Cogn. Sci.
,
7
(
2
), pp.
155
170
.
123.
Gick
,
M.
, and
Holyoak
,
K. J.
, 1983, “
Schema Induction and Analogical Transfer
,”
Cogn. Psychol.
,
15
(
1
), pp.
1
38
.
124.
Bhatta
,
S.
, and
Goel
,
A.
, 1997, “
Learning Generic Mechanisms for Innovative Design Adaptation
,”
J. Learn. Sci.
,
6
(
4
), pp.
367
396
.
125.
Gero
,
J. S.
, and
Maher
,
M. L.
, 1991, “
Mutation and Analogy to Support Creativity in Computer-aided design
,”
Proceedings of the Computer Aided Architectural Design Futures ’91, Zurich
, pp.
241
249
.
126.
Davies
,
J.
, and
Goel
,
A. K.
, 2001, “
Visual Analogy in Problem Solving
,”
Proceedings of the International Joint Conference on Artificial Intelligence
.
127.
Tseng
,
I.
,
Moss
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
, 2008, “
The Role of Timing and Analogical Similarity in the Stimulation of Idea Generation in Design
,”
Des. Stud.
,
29
, pp.
203
221
.
128.
McAdams
,
D. A.
, and
Wood
,
K. L.
, 2002, “
A Quantitative Similarity Metric for Design by Analogy
,”
J. Mech. Des.
,
124
(
2
), pp.
173
182
.
129.
Wiratunga
,
N.
, Craw,
S.
and
Rowe
,
R.
, 2002, “
Learning to Adapt for Case-Based Design
,”
Proceedings of the Sixth European Conference on Case-Based Reasoning
,
Springer-Verlag
,
Aberdeen, Scotland
, Sept. 4–7, pp.
421
435
.
130.
Fantoni
,
G.
,
Taviani
,
C.
, and
Santoro
,
R.
, 2007, “
Design by Functional Synonyms and Antonyms: A Structured Creative Technique Based on Functional Analysis
,”
Proc. Inst. Mech. Eng., Part B
,
221
, pp.
673
683
.
131.
Linsey
,
J.
,
Wood
,
K.
, and
Markman
,
A.
, 2008, “
WordTrees: A Method for Design-by-Analogy
,”
Proceedings of the 2008 ASEE Annual Conference and Exhibition
,
Pittsburgh, PA
.
132.
Bohm
,
M. R.
, and
Stone
,
R. B.
, 2009,
A Natural Language To Component Term Methodology
: Towards A Form Based Concept Generation Tool, DETC2009-86581.
133.
Yamamoto
,
E.
,
Taura
,
T.
, and
Ohashi
,
S.
, 2009. “
Thesaurus for Natural-Language-Based Conceptual Design
,”
The ASME 2009 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE2009
,
San Diego
, DETC2009-86943.
134.
Balazs
,
M. E.
, and
Brown
,
D.C.
, “
Design Simplification by Analogical Reasoning
,”
Knowledge Intensive Computer Aided Design
(
Kluwer Academic
,
Dordrecht, Netherlands
, 2001).
135.
Börner
,
K.
,
Pippig
,
E.
,
Tammer
,
E.
, and
Coulonet
,
C.
, 1996, “
Structural Similarity and Adaptation
,”
Proceedings of the Third European Workshop Case-Based Reasoning
,
Springer-Verlag
,
New York
, pp.
58
75
.
136.
Qian
,
L.
, and
Gero
,
J.
, 1992 “
A Design Support System Using Analogy
,”
Proceedings of the Second International Conference AI in Design
,
Kluwer Academic Publishers, Dordrecht
,
The Netherlands
, pp.
795
813
.
137.
Bhatta
,
S.
,
Goel
,
A. K.
, and
Prabhakar
,
S.
, 1994, “
Innovation in Analogical Design: A Model-Based Approach
,”
Proceedings of Third International Conference AI in Design
,
Kluwer
, pp.
57
74
.
138.
Kulinski
,
J.
, and
Gero
,
J. S.
, 2001, “
Constructive Representation in Situated Analogy in Design
,”
CAADFutures 2001
,
B.
de Vries
,
J.
van Leeuwen
, and
H.
Achten
, eds., Kluwer, Dordrecht, pp.
507
520
.
139.
Kolodner
,
J. L.
, Case-Based Reasoning (Morgan Kaufmann, California, 1993).
140.
Watson
,
I.
, and
Perera
R.
S., 1997,
Case Based Design: A Review and Analysis of Building Design Applications
,
Artif. Intell. Eng. Des. Anal. Manuf.
,
11
(
1
), pp.
59
87
.
141.
Reisbeck
,
C. K.
, and
Schank
,
R. C.
,
Inside Case-Based Reasoning
(
Lawrence Erlbaum Associates
,
Hillsdale, NJ
, 1989).
142.
Aamodt
,
A.
, and
Plaza
,
E.
, 1994, “
Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches
,”
AI Commun.
,
7
(
1
), pp.
39
59
.
143.
Heylighen
,
A.
, and
Neuckermans
,
H.
, 2001,
A Case Base for Case Based Design Tools for Architecture
,”
Comput.- Aided Des.
,
33
, pp.
1111
1122
.
144.
Goel
,
A. K.
, and
Craw
,
S.
, 2006, “
Design, Innovation and Case-Based Reasoning
,”
Knowl. Eng. Rev.
,
20
(
3
), pp.
271
276
.
145.
Watson
,
I.
, and
Marir
,
F.
, 1994, “
Case-Based Reasoning: A review
,”
Knowl. Eng. Rev.
,
9
(
4
), pp.
327
354
.
146.
Chandrasekaran
,
B.
, 1990, “
Design Problem Solving: A Task Analysis
,”
AI Mag.
11
, pp.
59
71
.
147.
Schank
,
R. C.
, and
Abelson
,
R. P.
,
Scripts, Plans, Goals and Understanding
(
Erlbaum
,
Hillsdale, New Jersey
, 1977).
148.
Kolodner
,
J. L.
, 1983, “
Maintaining Organization in a Dynamic Long-Term Memory
,”
Cognit. Sci.
,
7
(
4
), pp.
243
280
.
149.
Kolodner
,
J. L.
, 1983, “
Reconstructive Memory: A Computer Model
,”
Cognit. Sci.
,
7
(
4
), pp.
281
328
.
150.
Navinchandra
,
D.
, 1987, “
Exploring for Innovative Designs by Relaxing Criteria and Reasoning from Precedent-Based Knowledge
,” Ph.D. dissertation, M.I.T.
151.
Maher
,
M. L.
, and
Zhao
,
F.
, 1987, “
Using Experience to Plan the Synthesis of New Designs
,”
Expert Systems in Computer Aided Design
,
J.
Gero
, ed., North Holland, Amsterdam, The Netherlands.
152.
Schank
,
R.
,
Dynamic Memory: A Theory of Reminding and Learning in Computers and People
(
Cambridge University
,
Cambridge, UK
, 1982)
153.
Porter
,
B. W.
, and
Bareiss
,
E. R.
, 1986, “
PROTOS: An Experiment in Knowledge Acquisition for Heuristic Classification Tasks
,”
Proceedings of the First International Meeting on Advances in Learning (IMAL)
,
Les Arcs, France
, pp.
159
174
.
154.
Falkeneheimer
,
B.
,
Forbus
,
K. D.
, and
Gentner
,
D.
, 1986, “
The Structure Mapping Engine
,”
Proceeding of the Sixth National Conference on Artificial Intelligence
,
Philadelphia, PA
.
155.
Navinchandra
,
D.
,
Exploration and Innovation in Design: Towards a Computational Model
(
Springer Verlag
,
New York, NY
, 1991).
156.
Maher
,
M. L.
, and
Zhang
,
D. M.
, 1991, “
CADSYN: Using Case and Decomposition Knowledge for Design Synthesis
,”
Artificial Intelligence in Design
,
J. S.
Gero
, ed.,
Butterworth-Heinmann
,
Oxford, UK
.
157.
Domeshek
,
E.
, 1993, “
A Case Study of Case Indexing: Designing Index Feature Sets to Suit Task Demands and Support Parallelism
,”
Advances in Connectionnist and Neural Computation Theory
,
Analogical connections
J.
Barenden
and
K.
Holyoak
, eds., Vol.
2
, Norwood, NJ.
158.
Avramenko
,
Y.
, and
Kraslawski
A.
, 2008,
Case Based Design: Applications in Process Engineering, Studies in Computational Intelligence
,
Springer-Verlag
,
Berlin
, Vol.
87
.
159.
Chakrabarti
,
A.
, and
Shu
,
L. H.
, 2010, “
Guest Editorial: Biologically Inspired Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
, pp.
453
454
.
160.
Benami
,
O.
, and
Jin
,
Y.
, 2002, “
Creative Stimulation in Conceptual Design
,”
Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC/CIE)
,
Montreal, QC, Canada
, DETC2002/DTM-34023.
161.
Helms
,
M. E.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
, 2009, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.
162.
Vattam
,
S. S.
,
Helms
,
M. E.
, and
Goel
,
A. K.
, 2008, “
Compound Analogical Design: Interaction Between Problem Decomposition and Analogical Transfer in Biologically Inspired Design
,”
Proceedings of the Third International Conference on Design Computing and Cognition, Atlanta
, June,
Springer
,
Berlin
, pp.
377
396
.
163.
Vattam
,
S. S.
,
Helms
,
M. E.
, and
Goel
,
A. K.
, 2010, “
A Content Account of Creative Analogies in Biologically Inspired Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
, pp.
467
481
.
164.
Sartori
,
J.
,
Pal
,
U.
, and
Chakrabarti
,
A.
, 2010, “
A Methodology for Supporting “Transfer” in Biomimetic Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
, pp.
483
505
.
165.
Hill
,
B.
,
Innovationsquelle Natur: Naturorientierte Innovationsstrategie für Entwickler, Konstrukteure und Designer
(
Shaker, Aachen
,
Germany
, 1997).
166.
Hill
,
B.
, 2005, “
Goal Setting through Contradiction Analysis in the Bionics-Oriented Construction Process
,” CIM, Blackwell Publishing Ltd, Oxford, Vol.
14
(19), pp.
59
65
.
167.
Schild
,
K.
,
Herstatt
,
C.
, and Lü
thje
,
C.
,
How to Use Analogies for Breakthrough Innovations
, (
Technical University of Hamburg, Institute of Technology and Innovation Management
,
Hamburg
, 2004).
168.
Gramann
,
J.
, 2004, “
Problemmodelle und Bionik als Methode
,” Dissertation, TU, Munich.
169.
Vincent
,
J.
, and
Mann
,
D.
, 2002, “
Systematic Technology Transfer From Biology to Engineering
,” Philos. Trans. R. Soc. London,
360
, pp.
159
173
.
170.
Vincent
,
J. F. V.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A. K.
, 2006, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc.
, Interface,
3
, pp.
471
482
.
171.
Tinsley
,
A.
,
Midha
,
P.
,
Nagel
,
R.
,
McAdams
,
D.
,
Stone
,
R.
, and
Shu
,
L.
, 2007, “
Exploring the Use of Functional Models as a Foundation for Biomimetic Conceptual Design
,”
ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, Nevada
, DETC 2007-35604.
172.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A. K.
, and
Yen
,
J.
, 2010, “
DANE: Fostering Creativity in and through Biologically Inspired Design
,” To appear in
Proceedings of 1st International Conference on Design Creativity (ICDC2010)
, December,
Kobe, Japan
.
173.
Wilson
,
J.
,
Chang
,
P.
,
Yim
,
S.
, and
Rosen
,
D.
, 2009, “
Developing a Bio-Inspired Design Repository Using Ontologies
,”
Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE
,
San Diego, CA
, DETC2009-87272.
174.
Wilson
,
J. O.
, and
Rosen
,
D.
, 2007, “
Systematic Reverse Engineering of Biological Systems
,”
Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Las Vegas, NV
, DETC2007/DTM-35395.
175.
Hacco
,
E.
, and
Shu
,
L.
, 2002, “
Biomimetic Concept Generation Applied to Design for Remanufacture
,”
Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal
, Sept. 29–Oct. 2, DETC2002/DFM-34177.
176.
Shu
,
L. H.
, 2010, “
A Natural-Language Approach to Biomimetic Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
24
, pp.
507
519
.
177.
Sarkar
,
P.
,
Phaneendra
,
S.
, and
Chakrabarti
,
A.
, 2008, “
Developing Engineering Products Using Inspiration From Nature
,”
ASME J. Inf. Sci. Eng.
,
8
(
3
), pp.
031001
.
178.
Srinivasan
,
V.
, and
Chakrabarti
,
A.
, Supporting Process and Product Knowledge in Biomimetic Design, Special Issue on Design and Nature,
I. C.
Gebeshuber
,
H.
Abdel-Aal
, Guest Editors, Int. J. Des. Eng., Inderscience (In press).
179.
Boyer
,
F.
,
Chablat
,
D.
,
Lemoine
,
P.
, and
Wenger
,
P.
, 2009, “
The Eel-Like Robot
,”
Proceedings of ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference
,
Sand Diego, CA
, DETC2009-86328.
180.
Chakrabarti
,
A.
,
Ojha
,
S.
,
Pal
,
U.
,
Ranjan
,
B. S. C.
,
Srinivasan
,
V.
, and
Ranganath
,
R.
, 2009, “
Exploring Serially Connected Multi-Tracked All-Terrain Vehicles for Improved Obstacle Climbing Performance
,”
14th National Conference on Machines and Mechanisms (NaCoMM09)
,
Durgapur
.
You do not currently have access to this content.