The emerging field of Engineering Oriented Geometry (EOG) comprises new and extended geometric modeling methods that are directly related to the shared inherent engineering attributes of design, analysis, and manufacturing. This paper describes EOG methods that can be applied to scanned data, focusing on two main sub-areas: (a) shape reconstruction from scanned data; and (b) geometric modeling for analysis. The paper describes the main developments in geometric shape reconstruction methods for scanned data and in geometric modeling for analysis. In the field of geometric reconstruction efficient algorithms have been developed to cope with the open engineering problem of reconstruction from large scale, noisy, and incomplete data. Taken together, these solutions provide a comprehensive methodology that is fundamental to advancing the field of shape reconstruction. They constitute a new EOG model philosophy that can be implemented in CAD engineering for further processing, such as design, analysis, and manufacturing. Integrating CAD and multiscale analysis into one module creates a new paradigm that affects both fields and had the potential to lead to new areas of mechanical analysis.

References

References
1.
Bernard
,
A.
, and
Fischer
,
A.
, 2002, “
New Trends in Rapid Product Development
,”
Ann. CIRP
,
51
(
2
), pp.
635
652
.
2.
Nextec Technologies, 3D Inspection Technologies, Producer Documentation, http://www.nextec-wiz.comhttp://www.nextec-wiz.com
3.
Metris, Nikon Metrology, Producer Documentation, http://www.metris.behttp://www.metris.be
4.
CogniTens–3D Vision Systems, Producer Documentation, http://www.cognitens.comhttp://www.cognitens.com
5.
Optimet, Optical Metrology Ltd, Producer Documentation, http://www.optimet.comhttp://www.optimet.com
6.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1992, “
Surface Reconstruction From Unorganized Points
,”
Comput. Graphics
,
26
(
2
), pp.
71
78
.
7.
Bernardini
,
F.
,
Bajaj
,
C. L.
,
Chen
,
J.
, and
Schikore
,
D. R.
, 1999, “
Automatic Reconstruction of 3D CAD Models From Digital Scans
,”
Int. J. Comput. Geom. Appl.
,
9
(
4–5
), pp.
327
370
.
8.
Taubin
,
G.
, 2000, “
Geometric Signal Processing on Polygonal Meshes
,” Eurographics, State of the Art Report.
9.
Pernot
,
J-P.
Moraru
,
G.
, and
Véron
,
P.
, 2007, “
Repairing Triangle Meshes Built From Scanned Point Cloud
,”
J. Eng. Design
,
18
(
5
), pp.
459
473
.
10.
Schall
,
O.
,
Belyaev
,
A.
, and
Seidel
,
H.-P.
, 2005, “
Robust Filtering of Noisy Scattered Point Data
,”
IEEE/Eurographics Symposium on Point-Based Graphics
, pp.
71
77
.
11.
Azernikov
,
S.
, and
Fischer
,
A.
, 2003, “
Surface Reconstruction of Freeform Objects based on Hierarchical Space Decomposition
,”
Geometric Modeling and Computer Graphics, J. Shape Model.
,
9
(
2
), pp.
177
190
.
12.
Azernikov
,
S.
,
Miropolsky
,
A.
, and
Fischer
,
A.
, 2003, “
Surface Reconstruction of Freeform Objects from 3D Camera Data Based on Multiresolution Volumetric Method
,”
ASME J. Comput. Inform. Sci. Eng.
,
3
(
4
), pp.
334
338
.
13.
Azernikov
,
S.
, and
Fischer
,
A.
, 2004, “
Efficient Surface Reconstruction Method for Distributed CAD
,”
Comput. Aided Des. J.
,
36
(
9
), pp.
799
808
.
14.
Miropolsky
,
A.
, and
Fischer
,
A.
, 2006, “
Sharp Feature Detection for Inspection
,”
Shape Model. J.
,
12
(
2
), pp.
143
159
.
15.
Miropolsky
,
A.
, and
Fischer
,
A.
, 2007, “
Utilizing Diverse Feature Data for Reconstruction of Scanned Object as a Basis fo Inspection
,”
ASME J. Comput. Inform. Sci. Eng.
,
7
(
3
), pp.
211
225
.
16.
Miropolsky
,
A.
, and
Fischer
,
A.
, 2009, “
Extended Geometric Filter for Reconstruction as a Basis for Computational Inspection
,”
ASME, J. Manuf. Sci. Eng.
,
131
(
5
), pp.
1
8
.
17.
Tomasi
,
C.
, and
Manduchi
,
R.
, 1998, “
Bilateral Filtering for Gray and Color Images
,”
Proceedings of the IEEE International Conference on Computer Vision
, pp.
836
846
.
18.
Alliez
,
P.
,
Cohen-Steiner
,
D.
,
Devillers
,
D.
,
Lévy
,
B.
, and
Desbrun
,
M.
, 2003, “
Anisotropic Polygonal Remeshing
,”
SIGGRAPH, of ACM Trans. Graphics
,
22
(
3
), pp.
485
493
.
19.
Balmelli
,
L.
,
Morris
,
C. J.
,
Taubin
,
G.
, and
Bernardini
,
F.
, 2002, “
Volume Warping for Adaptive Iso-Surface Extraction
,”
Proceedings of the IEEE Visualization 2002 Conference
, pp.
467
474
.
20.
Zhang
,
M.
,
Huang
,
J.
,
Liu
,
X.
, and
Bao
,
H
, 2010, “
A Wave-Based Anisotropic Quadrangulation Method
,” SIGGRAPH, Vol. 29(4) of ACM Transactions on Graphics, 2010, pp.
118:1
8
.
21.
Azernikov
,
S.
, and
Fischer
,
A.
, 2006, “
A New Volume Warping Method for Surface Reconstruction
,”
ASME J. Comput. Inform. Sci. Eng.
,
6
(
4
), pp.
355
364
.
22.
Azernikov
,
S.
, and
Fischer
,
A.
, 2008, “
Emerging Non-Contact 3D Measurement Technologies For Shape Retrieval And Processing
,”
Virtual Phys. Prototyp. J.
,
3
(
2
), pp.
85
91
.
23.
Tai
,
C.-L.
,
Shinagawa
,
Y.
, and
Kunii
,
T. L.
, 1998, “
A Reeb Graph-Based Representation for Non-Sequential Construction of Topologically Complex Shapes
,”
Comput. Graphics
,
22
(
2–3
), pp.
255
268
.
24.
Biasotti
,
S.
, 2001, “
Topology Techniques for Shape Understanding
,” CESCG.
25.
Steiner
,
D.
, and
Fischer
,
A.
, 2004, “
Finding and Defining the Generators of Genus-n Objects for Constructing Topological and Cut Graphs
,”
Visual Comput.
,
20
(
4
), pp.
266
278
.
26.
Steiner
,
D.
, and
Fischer
,
A.
, 2005, “
Planar Parameterization for Closed Manifolds Genus-g Meshes Using any Type of Positive Weights
,”
ASME J. Comput. Inform. Sci. Eng.
,
5
(
2
), pp.
118
126
.
27.
Steiner
,
D.
, and
Fischer
,
A.
, 2006, “
Automatic Remeshing by Mapping a 2D Grid on 3D Genus-g Meshes based on Topological Analysis
,”
Comput. Aid. Design J.
,
38
(
8
), pp.
887
901
.
28.
Fritzke
,
B.
, 1995, “
A Growing Neural Gas Network Learns Topologies
,”
Advances in Neural Information Processing Systems 7
,
MIT Press
,
Cambridge, MA
, pp.
625
632
.
29.
Holdstein
,
Y.
, and
Fischer
,
A.
, 2008, “
Three-Dimensional Surface Reconstruction Using Meshing Growing Neural GAS (MGNG)
,”
Visual Comput. J.
,
24
(
4
), pp.
295
302
.
30.
Fischer
,
A.
,
Holdstein
,
Y.
,
Podshivalov
,
L.
, and
Bar-Yoseph
,
P. Z.
, 2008, “
A Neural Network Technique for Remeshing of Bone Micro-Structure
,”
Int. J. Shape Model.
,
14
(
1
), pp.
1
14
.
31.
Zaideman
,
O.
, and
Fischer
,
A.
, 2010, “
Geometrical Bone Modeling: From Macro to Micro Structures
,”
J. Comput. Sci. Technol.
,
25
(
3
), pp.
614
622
.
32.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Polman
,
B. J. W.
, 1996, “
Computational Strategies for Iterative Solutions of Large FEM Applications Employing Voxel Data
,”
Int. J. Numer. Methods Eng.
,
39
(
16
), pp.
2743
67
.
33.
Weinan
,
E.
,
Engquist
,
B.
,
Li
,
X.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
, 2007, “
Heterogeneous Multiscale Methods: A Review
,”
Commun. Comput. Phys.
,
2
(
3
), pp.
367
450
.
34.
Brandt
,
A.
, 2001, “
Multiscale Scientific Computation: Review
,”
Multiscale and Multiresolution Methods: Theory and Applications
,
T. F.
Chan.
,
T. J.
Barth
, and
R.
Haimes
, eds.,
Springer-Verlag
,
Heidelberg
, pp.
1
96
.
35.
Hoppe
,
H.
, 1996, “
Progressive Meshes
,”
Proceedings of the Conference on Computer Graphics and Interactive Techniques, 1996
,
ACM
, pp.
99
108
.
36.
Kawagai
,
M.
,
Sando
,
A.
, and
Takano
,
N.
, 2006, “
Image-Based Multi-Scale Modelling Strategy for Complex and Heterogeneous Porous Microstructures by Mesh Superposition Method
,”
Model. Simul. Mater. Sci. Eng.
,
14
(
1
), pp.
53
69
.
37.
Podshivalov
,
L.
,
Holdstein
,
Y.
,
Fischer
,
A.
, and
Bar-Yoseph
,
P. Z.
, 2009, “
Towards a Multi-Scale Computerized Bone Diagnostic System: 2D Micro-Scale Finite Element Analysis
,”
Int. J. Commun. Numer. Methods Eng.
,
25
(
6
), pp.
733
749
.
38.
Podshivalov
,
L.
,
Fischer
,
A.
, and
Bar-Yoseph
,
P. Z.
, 2010, “
Multiresolution 2D Geometric Meshing for Multiscale Finite Element Analysis of Bone Micro-Structures
,”
VirtualPhys. Prototyping J.
,
5
(
1
), pp.
33
43
.
39.
Podshivalov
,
L.
,
Fischer
,
A.
, and
Bar-Yoseph
,
P. Z.
, 2011, “
3D Hierarchical Geometric Modeling and Multiscale FE Analysis as a Base for Individualized Medical Diagnosis of Bone Structure
,”
Bone J.
48
(4)
, pp.
693
703
.
40.
Samet
,
H.
, 1990,
The Design and Analysis of Spatial Data Structures
,
Addison-Wesley
,
Reading, MA
.
41.
Fischer
,
A.
, 2009, “
Geometric Modeling and Analysis of Bone Micro-Structures as a Base for Scaffold Design
,”
International Conference on Tissue Engineering (ICTE09)
,
Leiria, Portugal
, July 2009.
42.
Holdstein
,
Y.
,
Fischer
,
A.
,
Podshivalov
,
L.
, and
Bar-Yoseph
,
P. Z.
, 2009, “
Volumetric Texture Synthesis of Bone Micro-Structure as a Base for Scaffold Design
,”
IEEE International Conference on Shape Modeling and Applications
,
Beijing, China
, June 2009.
43.
Holdstein
,
Y.
,
Podshivalov
,
L.
, and
Fischer
,
A.
, 2011, “
Geometric Modeling and Analysis of Bone Micro-Structures as a Base for Scaffold Design
,”
Advances on Modeling in Tissue Engineering
,
P.
Fernandes
, and
P.
Bártolo
, eds.,
Springer Publishers
.
44.
Samak
,
D.
,
Fischer
,
A.
, and
Rittel
,
D.
, 2007, “
3D Reconstruction and Visualization of Microstructure Surfaces From 2D Images
,”
Ann. CIRP
,
56
(
1
), pp.
149
152
.
You do not currently have access to this content.