With parametric computer-aided design (CAD) software, designers can create geometric models that are easily updated (within limits) by modifying the values of controlling parameters. These numeric and non-numeric parameters control the geometry in two ways: parametric operations and geometric constraint solving. This paper examines the advances over the last decade in the representation of parametric operations and of solving geometric constraint problems. An extensive literature has grown up surrounding geometric constraint solving and there has been substantial progress in the types of objects and constraints that can be handled robustly. Yet parametric operations have remained largely within the same conceptualization and begin to limit the flexibility of CAD systems, since they still do not align well with a systematic design process.

References

References
1.
Hoffmann
,
C. M.
, and
Joan-Arinyo
,
R.
, 2002, “
Parametric modeling
,”
Handbook of CAGD
,
G.
Farin
,
J.
Hoschek
, and
M.-S.
Kim
, Eds.,
Elsevier
,
New York
, pp.
519
541
.
2.
Requicha
,
A. A. G.
, 1980, “
Representations for Rigid Solids: Theory, Methods, and Systems
,”
ACM Comput. Surv.
,
12
, pp.
437
464
.
3.
Parametric Technology Corp. Cocreate
, 2010, www.ptc.com/products/cocreatewww.ptc.com/products/cocreate
4.
Hoffmann
,
C. M.
, 2005, “
Constraint-Based Computer-Aided Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
, pp.
182
187
.
5.
Chung
,
J.
, and
Schussel
,
M.
, 1990, “
Technical Evaluation of Variational and Parametric Design
,”
Comput. Eng.
,
1
, pp.
289
298
.
6.
Owen
,
J. C.
, 1991, “
Algebraic Solution for Geometry from Dimensional Constraints
,”
ACM Symposium Foundations of Solid Modeling
, pp.
397
407
.
7.
Bouma
,
W.
,
Fudos
,
I.
,
Hoffmann
,
C. M.
,
Cai
,
J.
, and
Paige
,
R.
, 1995, “
A Geometric Constraint Solver
,”
Comput.-Aided Des.
,
27
, pp.
487
501
.
8.
Shah
,
J.
, and
Mantyla
,
M.
, 1995,
Parametric and Feature-Based CAD/CAM
,
Wiley
,
New York, NY
.
9.
Venkatamaran
,
S.
, 2000, “
Integration of Design by Features and Feature Recognition
,” Master’s thesis, Arizona State University.
10.
Bidarra
,
R.
, 1999, “
Validity Maintenance in Semantic Feature Modeling
,” PhD thesis, Technische Universiteit Delft.
11.
Braid
.
I.
, 1996, “
Non-Local Blending of Boundary Models
,”
Comput.-Aided Des.
,
29
, pp.
89
100
.
12.
Hardee
,
E.
,
Chang
,
K.-H.
,
Tu
,
J.
,
Choi
,
K. K.
,
Grindeanu
,
I.
, and
Yu
,
X.
, 1999, “
A CAD-Based Design Parameterization for Shape Optimization of Elastic Solids
,”
Adv. Eng. Software
,
30
, pp.
185
199
.
13.
Bettig
,
B.
,
Bapat
,
V.
, and
Bharadwaj
,
B.
, 2005, “
Limitations of Parametric Operators for Supporting Systematic Design
,” in
Proceedings of ASME Design Engineering Technical Conferences and Computers in Engineering Conference
, DETC2005.
14.
Ilies
,
H. T.
, 2006, “
Parametric Solid Modeling
,” in
Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference
, DETC2006.
15.
Clarke
,
C.
, 2009, “
Super Models
,”
Engineer
,
294
, pp.
36
38
.
16.
Samuel
,
S.
, 2006, “
CAD Package Pumps up the Parametrics
,”
Mach. Des.
,
78
, pp.
82
84
.
17.
Wu
,
N.
, and
Ilies
,
H.
, 2007, “
Motion-Based Shape Morphing of Solid Models
,” in
Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference
, IDETC2007.
18.
Siemens PLM Software. Synchronous Technology
, 2011.
19.
Wang
,
Y.
, 2007, “
Solving Interval Constraints by Linearization in Computer-Aided Design
,”
Reliab. Comput.
,
13
, pp.
211
244
.
20.
Nahm
,
Y.-E.
, and
Ishikawa
,
H.
, 2006, “
A New 3D-CAD System for Set-Based Parametric Design
,”
Int. J. Adv. Manuf. Technol.
,
29
, pp.
137
150
.
21.
Hoffmann
,
C. M.
, and
Joan-Arinyo
,
R.
, 2005, “
A Brief on Constraint Solving
,”
Comput.-Aided Des.
,
2
, pp.
655
663
.
22.
Kramer
,
G. A.
, 1991, “
Using Degree of Freedom Analysis to Solve Geometric Constraint Systems
,”
Symposium on Solid Modeling Foundations and CAD/CAM Applications
,
J.
Rossignac
and
J.
Turner
, eds., pp.
371
378
.
23.
Kramer
,
G. A.
, 1992,
Solving Geometric Constraint Systems
,
MIT
,
Cambridge
.
24.
Hsu
,
C.-Y.
, and
Brüderlin
,
B.
, 1997, “
A Hybrid Constraint Solver Using Exact and Iterative Geometric Constructions
,”
CAD Systems Development: Tools and Methods
,
D.
Roller
and
P.
Brunet
, eds.,
Springer-Verlag
,
Berlin
, 1997, pp.
266
298
.
25.
Latham
,
R.
, and
Middleditch
,
A.
, 1996, “
Connectivity Analysis: A Tool for Processing Geometric Constraints
,”
Comput.-Aided Des.
,
28
, pp.
917
928
.
26.
Freeman-Benson
,
B.
,
Maloney
,
J.
, and
Borning
,
A.
, 1990, “
An Incremental Constraint Solver
,”
Commun. ACM
,
33
, pp.
54
63
.
27.
Veltkamp
,
R.
, and
Arbab
,
F.
, 1992, “
Geometric Constraint Propagation With Quantum Labels
,” in
Eurographics Workshop on Computer Graphics and Mathematics
, pp.
211
228
.
28.
Borning
,
A.
,
Anderson
,
R.
, and
Freeman-Benson
,
B.
, 1996, “
Indigo: A Local Propagation Algorithm for Inequality Constraints
, in
ACM UIST ’
96
, pp.
129
136
.
29.
Aldefeld
,
B.
, 1998, “
Variation of Geometric Based on a Geometric-Reasoning Method
,”
Comput.-Aided Des.
,
20
, pp.
117
126
.
30.
Brüderlin
,
B. D.
, 1988, “
Rule-Based Geometric Modelling
,” PhD thesis, Institut für Informatik der ETH Zürich.
31.
Brüderlin
,
B. D.
, 1990, “
Symbolic Computer Geometry for Computer Aided Geometric Design
,”
Advances in Design and Manufacturing Systems
pp.
177
181
.
32.
Brüderlin
,
B. D.
, 1993,
Using Geometric Rewrite Rules for Solving Geometric Problems Symbolically
,”
Theoretical Computer Science
116
, pp.
291
303
.
33.
Sohrt
,
W.
, and
Brüderlin
,
B. D.
, 1991,
Interaction with Constraints in 3D Modeling.
Int. J. Comput. Geom. Appl.
,
1
, pp.
405
425
.
34.
Yamaguchi
,
Y.
, and
Kimura
,
F.
, 1990, “
A Constraint Modeling System for Variational Geometry
,”
Geometric Modeling for Product Engineering
,
J. U.
Turner
,
M. J.
Wozny
, and
K.
Preiss
, eds.,
Elsevier
,
North Holland
, pp.
221
233
.
35.
Sunde
,
G.
, 1987, “
A CAD System With Declarative Specification of Shape
,”
Eurographics Workshop on Intelligent CAD Systems
, pp.
90
105
.
36.
Verroust
,
A.
,
Schonek
,
F.
, and
Roller
,
D.
, 1992, “
Rule-Oriented Method for Parameterized Computer-Aided Design
,”
Comput.-Aided Des.
,
24
, pp.
531
540
.
37.
Joan-Arinyo
,
R.
, and
Soto
,
A.
, 1997, “
A Correct Rule-Based Geometric Constraint Solver
,”
Comput. Graphics
,
21
, pp.
599
609
.
38.
Joan-Arinyo
,
R.
, and
Soto
,
A.
, 1997, “
A Ruler-and-Compass Geometric Constraint Solver
,”
Product Modeling for Computer Integrated Design and Manufacture
,
M. J.
Pratt
,
R. D.
Sriram
, and
M. J.
Wozny
, eds., pp.
384
393
.
39.
Buchberger
,
B.
, 1985, “
Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory
,”
Multidimensional Systems Theory
,
D. Reidel Publishing
, pp.
184
232
.
40.
Chou
,
S.-C.
, 1988, “
An Introduction to Wu’s Method for Mechanical Theorem Proving in Geometry
,”
J. Automated Reasoning
,
4
, pp.
237
267
.
41.
Wu
,
W.-T.
, 1994, “
Mechanical Theorem Proving in Geometries
,”
Texts and Monographs in Symbolic Computations
,
B.
Buchberger
and
G. E.
Collins
, eds.,
Springer-Verlag
,
Berlin
.
42.
Buchanan
,
S. A.
, and
de Pennington
,
A.
, 1993, “
Constraint Definition System: A Computer-Algebra Based Approach to Solving Geometric-Constraint Problems
,”
Comput.-Aided Des.
,
25
, pp.
741
750
.
43.
Kondo
,
K.
, 1992, “
Algebraic Method for Manipulation of Dimensional Relationships in Geometric Models
,”
Comput.-Aided Des.
,
24
, pp.
141
147
.
44.
Borning
,
A.
, 1981, “
The Programming Language Aspects of ThingLab, a Constrained Oriented Simulation Laboratory
,”
ACM Trans. Program. Lang. Syst.
,
3
, pp.
353
387
.
45.
Hillyard
,
R.
, and
Braid
,
I.
, 1978, “
Characterizing Non-Ideal Shapes in Terms of Dimensions and Tolerances
,”
Proceedings of ACM Computer Graphics
, pp.
234
238
.
46.
Sutherland
,
I.
, 1963, “
Sketchpad, a Man-Machine Graphical Communication System
,”
in Proceedings of the Spring Joint Computing Conference
,
IFIPS
, pp.
329
345
.
47.
Light
,
R.
, and
Gossard
,
D.
, 1982, “
Modification of Geometric Models Through Variational Geometry
,
Comput.-Aided Des.
,
14
, pp.
209
214
.
48.
Lin
,
V. C.
,
Gossard
,
D. C.
, and
Light
,
R. A.
, 1981, “
Variational Geometry in Computer-Aided Design
,”
ACM Comput. Graphics
,
15
, pp.
171
177
.
49.
Nelson
,
G.
, 1985, “
Juno, a Constraint-Based Graphics System
.
SIGGRAPH
, pp.
235
243
.
50.
Allgower
,
E.
, and
Georg
,
K.
, 1993, “
Continuation and Path Following
,”
Acta Numerica
,
7
, pp.
1
64
.
51.
Lamure
,
H.
, and
Michelucci
,
D.
, 1995, “
Solving Geometric Constraints by Homotopy
,”
Third Symposium on Solid Modeling and Applications
,
C. M.
Hoffmann
and
J.
Rossignac
, eds., pp.
263
269
.
52.
Durand
,
C.
, 1998, “
Symbolic and Numerical Techniques for Constraint Solving
,” PhD thesis, Computer Science, Purdue University.
53.
Wu
,
W.-T.
, 1986, “
Basic Principles of Mechanical Theorem Proving in Geometries
,”
J. Syst. Sci. Math. Sci.
,
4
, pp.
207
235
.
54.
Chou
,
S.-C.
,
Gao
,
X.-S.
, and
Zhang
,
J.-Z.
, 1996, “
Automated Generation of Readable Proofs With Geometric Invariants: Multiple and Shortest Proof Generation
,”
J. Automat. Reason.
7
, pp.
325
347
.
55.
Chou
,
S.-C.
,
Gao
,
X.-S.
, and
Zhang
,
J.-Z.
, 1996, “
Automated Generation of Readable Proofs With Geometric Invariants: Theorem Proving With Full Angles
,”
J. Automat. Reason.
,
7
, pp.
349
370
.
56.
Moll
,
M.
, and
Kavraki
,
L.
, 2006, “
Path Planning for Deformable Linear Objects
,”
IEEE J. Rob.
,
22
, pp.
625
636
.
57.
Ahn
,
Y. J.
,
Hoffmann
,
C. M.
, and
Rosen
,
P.
, 2011, “
Length and Energy of Quadratic Bézier Curves and Applications
” (submitted).
58.
Bao
,
F.
,
Sun
,
Q.
,
Pan
,
J.
, and
Duan
,
Q.
, 2010, “
A Blending Interpolator With Value Control and Minimal Strain Energy
,”
Comput. Graphics
,
34
, pp.
119
124
.
59.
Ginkel
,
I.
, and
Umlauf
,
G.
, 2008, “
Local Energy-Optimizing Subdivision Algorithms
,”
Comput. Aided Geom. Des.
,
25
, pp.
137
147
.
60.
Xu
,
Y.
,
Joneja
,
A.
, and
Tang
,
K.
, 2009, “
Surface Deformation Under Area Constraints
,”
Comput. Aided Geom. Des.
,
6
, pp.
711
719
.
61.
Kortenkamp
,
U.
, and
Richter-Gebert
,
J.
, 2010,
The Interactive Geometry Software Cinderella.2
,
Springer-Verlag
,
Berlin
.
62.
Freixas
,
M.
,
Joan-Arinyo
,
R.
, and
Soto-Riera
,
A.
, 2008, “
A Constraint-Based Dynamic Geometry System
,”
ACM Solid and Physical Modeling
, pp.
37
46
.
63.
Cao
,
C.
,
Zhang
,
B.
,
Wang
,
L.
, and
Li
,
W.
, 2006, “
The Parametric Design Based on Organizational Evolutionary Algorithm
,”
in PRICAI 2006 – 9th Pacific Rim International Conference on Artificial Intelligence
, pp.
940
944
,
Springer Lect.
Notes in AI 4099.
64.
Yuan
,
H.
,
Li
,
W.
,
Yi
,
R.
, and
Zhao
,
K.
, 2006, “
The TPSO Algorithm to Solve Geometric Constraint Problems
,”
Comput. Inform. Syst.
,
2
, pp.
1311
1316
.
65.
Gao
,
X.-Y.
,
Sun
,
L.-Q.
, and
Sun
,
D.-S.
, 2009, “
Artificial Immune-Chaos Hybrid Algorithm for Geometric Constraint Solving
,”
Inf. Technol. J.
, pp.
360
365
.
66.
Fudos
,
I.
, 1995, “
Constraint Solving for Computer Aided Design
,” PhD thesis, Purdue University, Department of Computer Sciences.
67.
Fudos
,
I.
, and
Hoffmann
,
C. M.
, 1996, “
Correctness Proof of a Geometric Constraint Solver
,”
Int. J. Comput. Geom. Appl.
,
6
, pp.
405
420
.
68.
Hoffmann
,
C. M.
, and
Peters
,
J.
, 1995, “
Geometric Constraints for CAGD
,”
Mathematical Methods for Curves and Surfaces
,
M.
Daehlen
,
T.
Lyche
, and
L.
Schumaker
, eds.,
Vanderbilt University Press
, 1995, pp.
237
254
.
69.
Fudos
,
I.
, and
Hoffmann
,
C. M.
, 1996, “
Constraint-Based Parametric Conics for CAD
,”
Comput.-Aided Des.
,
28
91
100
.
70.
Fudos
,
I.
, and
Hoffmann
,
C. M.
, 1997, “
A Graph-Constructive Approach to Solving Systems of Geometric Constraints
,”
ACM Trans. Graphics
,
16
, pp.
179
215
.
71.
Hoffmann
,
C. M.
, and
Joan-Arinyo
,
R.
, 1997, “
Symbolic Constraints in Constructive Geometric Constraint Solving
,”
J. Symb. Comput.
,
23
, pp.
287
300
.
72.
Hoffmann
,
C. M.
, and
Vermeer
,
P. J.
, 1994, “
Geometric Constraint Solving in R2 and R3
,”
Computing in Euclidean Geometry
,
2nd ed.
,
D. Z.
Du
and
F.
Hwang
, eds.,
World Scientific Publishing
,
Singapore
, pp.
266
298
.
73.
Hoffmann
,
C. M.
, and
Vermeer
,
P. J.
, 1995, “
A Spatial Constraint Problem
,”
Computational Kinematics
,
J.-P.
Merlet
and
B.
Ravani
, eds.,
Kluwer Acad.
Publ.
, pp.
83
92
.
74.
Durand
,
C.
, and
Hoffmann
,
C. M.
, 1999, “
Variational Constraints in 3D
,” in
Proceedings of International Conference on Shape Modeling and Applications
, pp.
90
97
.
75.
Durand
,
C.
, and
Hoffmann
,
C. M.
, 2000, “
A Systematic Framework for Solving Geometric Constraints Analytically
,”
J. Symb. Comput.
,
30
, pp.
493
520
.
76.
Hoffmann
,
C. M.
, and
Yuan
,
B.
, 2000, “
On Spatial Constraint Solving Approaches
,”
Proceedings of ADG
2000,
ETH Zurich
, in press.
77.
Hoffmann
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
, 1997, “
Finding Solvable Subsets of Constraint Graphs
,”
Principles and Practice of Constraint Programming – CP97
,
Springer LNCS 1330
,
NY
, pp.
463
477
.
78.
Hoffmann
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
, 1998, “
Geometric Constraint Decomposition
,”
Geometric Constraint Solving and Applications
,
B.
Bruderlin
and
D.
Roller
, eds., pp.
170
195
.
79.
Hoffmann
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
, 2001, “
Decomposition Plans for Geometric Constraint Problems, Part I: Performance Measures for CAD
,”
J. Symb. Comput.
,
31
, pp.
367
408
.
80.
Hoffmann
,
C. M.
,
Lomonosov
,
A.
, and
Sitharam
,
M.
, 2001, “
Decomposition Plans for Geometric Constraint Problems, Part II: New Algorithms
,”
J. Symb. Comput.
,
31
, pp.
409
428
.
81.
Joan-Arinyo
,
R.
, and
Soto-Riera
,
A.
, 1999, “
Combining Constructive and Equational Geometric Constraint Solving Techniques
,”
ACM Trans. Graphics
,
18
, pp.
35
55
.
82.
Joan-Arinyo
,
R.
,
Soto-Riera
,
A.
,
Vila-Marta
,
S.
, and
Vilaplana
,
J.
, 2001, “
On the Domain of Constructive Geometric Constraint Solving Techniques
,”
IEEE Spring Conference on Computer Graphics
,
R.
Duricovic
and
S.
Czanner
, eds.,
Budmerice
,
Slovakia
, pp.
49
54
.
83.
Joan-Arinyo
,
R.
,
Soto-Riera
,
A.
,
Vila-Marta
,
S.
, and
Vilaplana
,
J.
, 2002, “
Declarative Characterization of a General Architecture for Constructive Geometric Constraint Solvers
,”
The Fifth International Conference on Computer Graphics and Artificial Intelligence
,
D.
Plemenos
, ed.,
Limoges
,
France
, pp.
63
76
.
84.
Joan-Arinyo
,
R.
,
Soto-Riera
,
A.
,
Vila-Marta
,
S.
, and
Vilaplana
,
J.
, 2004, “
Revisiting Decomposition Analysis of Geometric Constraint Graphs
,”
Comput.-Aided Des.
,
36
, pp.
123
140
.
85.
Jermann
,
C.
,
Trombettoni
,
G.
,
Neveu
,
B.
, and
Mathis
,
P.
, 2006, “
Decomposition of Geometric Constraints Systems: A Survey
,”
Int. J. Comput. Geom. Appl.
,
23
, pp.
1
35
.
86.
Gao
,
X.-S.
,
Hoffmann
,
C. M.
, and
Yang
,
W.
, 2002, “
Solving Spatial Basic Geometric Constraint Configurations With Locus Intersection
.
Solid Modeling ’02
, pp.
95
104
.
87.
Gao
,
X.-S.
,
Hoffmann
,
C. M.
, and
Yang
,
W.
, 2004, “
Solving Spatial Basic Geometric Constraint Configurations With Locus Intersection
,”
Comput.-Aided Des.
,
36
, pp.
111
122
.
88.
Sitharam
,
M.
, and
Zhou
,
Y.
, 2004, “
A Tractable, Approximate Characterization of Combinatorial Rigidity in 3D
,” in 5th Automated Deduction in Geometry.
89.
Gao
,
H.
, and
Sitharam
,
M.
, 2008, “
Characterizing 1-dof Henneberg Graphs With Efficient Configuration Spaces
,” arXiv:0810.1997v2.
90.
Mathis
,
P.
, and
Thierry
,
S.
, 2010, “
A Formalization of Geometric Constraint Systems and Their Decomposition
,”
Formal Aspects of Computing
,
22
, pp.
129
151
.
91.
van der Meiden
,
H.
, 2008, “
Semantics of Families of Objects
,” PhD thesis, Delft University of Technology, Netherlands.
92.
van der Meiden
,
H.
, and
Bronsvoort
,
W.
, 2010, “
A Non-Rigid Cluster Rewriting Approach to Solve Systems of 3D Geometric Constraints
,”
Comput.-Aided Des.
,
42
, pp.
36
49
.
93.
Hoffmann
,
C. M.
,
Sitharam
,
M.
, and
Yuan
,
B.
, 2004, “
Making Constraint Solvers Useable: Overconstraints
,
Comput.-Aided Des.
,
36
, pp.
377
399
.
94.
Joan-Arinyo
,
R.
,
Soto-Riera
,
A.
, and
Vilaplana-Pastó
,
M.
, 2003, “
Transforming an Underconstrained Geometric Constraint Problem into a Well-Constrained One
,” Symposium on Solid Modeling and appl., pp.
33
44
.
95.
Jermann
,
C.
, and
Hosobe
,
H.
, 2008, “
A Constraint Hierarchies Approach to Geometric Constraint Sketches
,” 23rd SAC ’08, pp.
1843
1844
.
96.
Chiang
,
C.-S.
, and
Hoffmann
,
C. M.
, 2001, “
Variable-Radius Circles in Cluster Merging, Part I: Translational Clusters
,”
Comput.-Aided Des.
,
34
, pp.
787
797
.
97.
Chiang
,
C.-S.
, and
Hoffmann
,
C. M.
, 2001, “
Variable-Radius Circles in Cluster Merging, Part II: Rotational Clusters
,”
Comput.-Aided Des.
,
34
, pp.
799
805
.
98.
Chiang
,
C.-S.
, and
Joan-Arinyo
,
R.
, 2004, “
Revisiting Variable-Radius Circles in Constructive Geometric Constraint Solving
,”
CAGD
,
221
, pp.
371
399
.
99.
Hoffmann
,
C. M.
,
Chiang
,
C.-S.
, and
Rosen
.
P.
, 2010, “
Hardware Assist for Constrained Circle Constructions I
,”
Comput.-Aided Des. Appl
,
7
, pp.
17
33
.
100.
Hoffmann
,
C. M.
,
Chiang
,
C.-S.
, and
Rosen
,
P.
, 2010, “
Hardware Assist for Constrained Circle Constructions II
,”
Comput.-Aided Des. Appl
,
7
, pp.
33
44
.
101.
Chiang
,
C.-S.
,
Hoffmann
,
C. M.
, and
Rosen
.
P.
, “
A Generalized Malfatti Problem
. Computational Geometry Theory and Applications (in press).
102.
Hoffmann
,
C. M.
, and
Kim
,
K.-J.
, 2001, “
Towards Valid Parametric CAD models
,”
Comput.-Aided Des.
,
33
, pp.
81
90
.
103.
van der Meiden
,
H.
, and
Bronsvoort
,
W.
, 2006, “
A Constructive Approach to Calculate Parameter Ranges for Systems of Geometric Constraints
,”
Comput.-Aided Des.
,
38
, pp.
275
283
.
104.
Joan-Arinyo
,
R.
, and
Mata
,
N.
, 2001, “
Applying Constructive Geometric Constraint Solvers to Geometric Problems With Interval Parameters
,”
Nonlinear Anal. Theory, Methods Appl.
,
47
, pp.
213
224
.
105.
Mekhnacha
,
K.
,
Mazer
,
E.
, and
Bessiere
,
P.
, 2001, “
The Design and Implementation of a Bayesian CAD Modeler for Robotic Applications
,”
Adv. Rob.
,
15
, pp.
45
69
.
106.
Sitharam
,
M.
,
Arbree
,
A.
,
Zhou
,
Y.
, and
Kohareswaran
,
N.
, 2006, “
Solution Management and Navigation for 3d Geometric Constraint Systems
,”
ACM TOG
,
25
, pp.
194
213
.
107.
Bettig
,
B.
, and
Shah
,
J.
, 2003, “
Solution Selectors: A User-Oriented Answer to the Multiple Solution Problem in Constraint Solving
,”
ASME J. Mech. Des.
,
125
, pp.
443
451
.
108.
Kale
,
V.
,
Bettig
,
B.
, and
Bapat
,
V.
, 2008, “
Geometric Constraint Solving With Solution Selectors
,” In
Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, DETC2008.
109.
Gao
,
X.-S.
,
Jiang
,
K.
, and
Zhu
.
C.-C.
, 2002, “
Geometric Constraint Solving With Conics and Linkages
,”
Comput.-Aided Des.
,
34
, pp.
421
433
.
110.
Cheteut
,
V.
,
Daniel
,
M.
,
Hahmann
,
S.
,
LaGreca
,
R.
,
Lon
,
J.
,
Maculet
,
R.
, and
Sauvage
,
B.
, 2007, “
Constraint Modeling for Curves and Surfaces in CAGD
,”
Intl. J. Shape Model.
,
13
, pp.
159
199
.
111.
Ahn
,
Y.-J.
, and
Hoffmann
,
C. M.
, 2010, “
Constraint-Based ln-Curves
,”
SAC
, pp.
1242
1246
.
112.
Hanniel
,
I.
, and
Haller
,
K.
, 2009, “
Solving Global Geometric Constraints on Free-Form Curves
,” In
ACM Symposium Solid and Physics Modeling
, pp.
307
312
.
113.
Michelucci
,
D.
, 2004, “
Using Cayley Menger determinants
,” In
Proceedings of the 2004 ACM Symposium on Solid Modeling
, pp.
285
290
.
114.
Sitharam
,
M.
,
Oung
,
J.
,
Arbree
,
A.
, and
Zhou
,
Y.
, 2006, “
Mixing Features and Variational Constraints in 3d
,” Comput.-Aided Des.,
38
.
115.
Foufou
,
S.
,
Michelucci
,
D.
, and
Jurzak
,
J.-P.
, 2005, “
Numerical Decomposition of Geometric Constraints
,”
Symposium of Solid Modeling and Applications
, pp.
143
151
.
116.
Michelucci
D.
and
Foufou
,
S.
, 2006,
Geometric Constraint Solving: The Witness Configuration Method
,
Comput.-Aided Des.
,
38
, pp.
284
299
.
117.
Michelucci
,
D.
, and
Foufou
,
S.
, 2009, “
Interrogating Witnesses for Geometric Constraint Solving
,”
SIAM/ACM Joint Conference Geometry Physics Modeling
, pp.
343
348
.
118.
Shi
,
Z.
, and
Chen
L.
, 2006, “
Simplified Iterative Algorithm to Solve Geometric Constraints
,”
J. Comput.-Aid. Design Comput. Graphics
,
18
, pp.
787
792
(in Chinese).
You do not currently have access to this content.