This paper presents a unified framework for computing a surface to approximate a target shape defined by discrete data points. A signed point-to-surface distance function is defined, and its properties are investigated, especially, its second-order Taylor approximant is derived. The intercorrelations between the signed and the squared distance functions are clarified, and it is demonstrated that the squared distance function studied in the previous works is just the Type I squared distance function deduced from the signed distance function. It is also shown that surface approximations under different criteria and constraints can all be formulated as optimization problems with specified requirements on the residual errors represented by the signed distance functions, and that classical numerical optimization algorithms can be directly applied to solve them since the derivatives of the involved objective functions and constraint functions are all available. Examples of global cutter position optimization for flank milling of ruled surface with a cylindrical tool, which requires approximating the tool envelope surface to the point cloud on the design surface following the minimum zone criterion, are given to confirm the validity of the proposed approach.

1.
Liu
,
Y.
,
Pottman
,
H.
, and
Wang
,
W.
, 2006, “
Constrained 3D Shape Reconstruction Using a Combination of Surface Fitting and Registration
,”
Comput.-Aided Des.
0010-4485,
38
, pp.
572
583
.
2.
Sourlier
,
D.
, and
Bucher
,
A.
, 1995, “
Surface-Independent, Theoretically Exact Bestfit for Arbitrary Sculptured, Complex, or Standard Geometries
,”
Precis. Eng.
0141-6359,
17
(
2
), pp.
101
113
.
3.
Sarkar
,
B.
, and
Menq
,
C. -H.
, 1991, “
Smooth-Surface Approximation and Reverse Engineering
,”
Comput.-Aided Des.
0010-4485,
23
(
9
), pp.
623
628
.
4.
Li
,
Z.
,
Gou
,
J.
, and
Chu
,
Y.
, 1998, “
Geometric Algorithms for Workpiece Localization
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
5
), pp.
864
878
.
5.
Pratt
,
M. J.
, 1985, “
Smooth Parametric Surface Approximation to Discrete Data
,”
Comput. Aided Geom. Des.
0167-8396,
2
, pp.
165
171
.
6.
Sarkar
,
B.
, and
Menq
,
C. -H.
, 1991, “
Parameter Optimization in Approximating Curves and Surfaces to Measurement Data
,”
Comput. Aided Geom. Des.
0167-8396,
8
(
4
), pp.
267
290
.
7.
Yau
,
H. T.
, and
Menq
,
C. H.
, 1996, “
A Unified Least-Squares Approach to the Evaluation of Geometrical Errors Using Discrete Measurement Data
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
(
11
), pp.
1269
1290
.
8.
Yau
,
H. T.
, and
Chen
,
J. S.
, 1997, “
Reverse Engineering of Complex Geometry Using Rational B-Splines
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
13
(
8
), pp.
548
555
.
9.
Ma
,
W.
, and
Kruth
,
J. P.
, 1995, “
Parameterization of Randomly Measured Points for Least Squares Fitting of B-Spline Curves and Surfaces
,”
Comput.-Aided Des.
0010-4485,
27
(
9
), pp.
663
675
.
10.
Ma
,
W.
, and
Kruth
,
J. P.
, 1998, “
NURBS Curve and Surface Fitting for Reverse Engineering
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
14
, pp.
918
927
.
11.
Piegl
,
L.
, and
Tiller
,
W.
, 2001, “
Parameterization for Surface Fitting in Reverse Engineering
,”
Comput.-Aided Des.
0010-4485,
33
, pp.
593
603
.
12.
Weiss
,
V.
,
Andor
,
L.
,
Renner
,
G.
, and
Várady
,
T.
, 2002, “
Advanced Surface Fitting Techniques
,”
Comput. Aided Geom. Des.
0167-8396,
19
, pp.
19
42
.
13.
Pottmann
,
H.
, and
Hoffer
,
M.
, 2003, “
Geometry of the Squared Distance Function to Curves and Surfaces
,”
Visualization and Mathematics III
,
H.
Hege
and
K.
Polthier
, eds., pp.
223
244
.
14.
Pottmann
,
H.
, and
Leopoldseder
,
S.
, 2003, “
A Concept for Parametric Surface Fitting Which Avoids the Parametrization
,”
Comput. Aided Geom. Des.
0167-8396,
20
, pp.
343
362
.
15.
Pottmann
,
H.
,
Leopoldseder
,
S.
, and
Hofer
,
M.
, 2004, “
Registration Without ICP
,”
Comput. Vis. Image Underst.
1077-3142,
95
, pp.
54
71
.
16.
Wang
,
W. P.
,
Pottman
,
H.
, and
Liu
,
Y.
, 2006, “
Fitting B-Spline Curves to Point Clouds by Curvature-Based Squared Distance Minimization
,”
ACM Trans. Graphics
0730-0301,
25
(
2
), pp.
214
238
.
17.
Zhu
,
L. M.
, 2002, “
Distance Function Based Models and Algorithms for Fitting of Geometric Elements to Measured Coordinate Points
,” Ph.D. thesis, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan.
18.
Zhu
,
L. M.
, and
Ding
,
H.
, 2004, “
A Unified Approach for Least-Squares Surface Fitting
,”
Sci. China, Ser. G
1672-1799,
47
(
SI
), pp.
72
78
.
19.
Zhu
,
L. M.
,
Xiong
,
Z. H.
,
Ding
,
H.
, and
Xiong
,
Y. L.
, 2004, “
A Distance Function Based Approach for Localization and Profile Error Evaluation of Complex Surface
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
542
554
.
20.
Zhu
,
L. M.
,
Ding
,
H.
, and
Xiong
,
Y. L.
, 2003, “
Distance Function Based Algorithm for Spatial Straightness Evaluation
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
217
, pp.
931
939
.
21.
Hoppe
,
H.
,
ReRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
,
Stuetzle
,
W.
, 1992, “
Surface Reconstruction From Unorganized Points
,”
SIGGRAPH
, pp.
71
78
.
22.
Flöry
,
S.
, and
Hofer
,
M.
, 2010, “
Surface Fitting and Registration of Point Clouds Using Approximations of the Unsigned Distance Function
,”
Comput. Aided Geom. Des.
0167-8396,
27
, pp.
60
77
.
23.
Zhou
,
J.
,
Sherbrooke
,
E. C.
, and
Patrikalakis
,
N. M.
, 1993, “
Computation of Stationary Points of Distance Functions
,”
Eng. Comput.
0177-0667,
9
(
4
), pp.
231
246
.
24.
Pigel
,
L.
, and
Tiller
,
W.
, 1995,
The NURBS Book
,
Springer
,
Berlin
.
25.
Elber
,
G.
, and
Fish
,
R.
, 1997, “
5-Axis Freeform Surface Milling Using Piecewise Ruled Surface Approximation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
3
), pp.
383
387
.
26.
Subag
,
J.
, and
Elber
,
G.
, 2006, “
Piecewise Developable Surface Approximation of General NURBS Surfaces With Global Error Bounds
,”
Lect. Notes Comput. Sci.
0302-9743,
4077
, pp.
143
156
.
27.
Liu
,
X. W.
, 1995, “
Five-Axis NC Cylindrical Milling of Sculptured Surfaces
,”
Comput.-Aided Des.
0010-4485,
27
(
12
), pp.
887
894
.
28.
Redonnet
,
J. M.
,
Rubio
,
W.
, and
Dessein
,
G.
, 1998, “
Side Milling of Ruled Surfaces: Optimum Positioning of the Milling Cutter and Calculation of Interference
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
14
(
7
), pp.
459
465
.
29.
Menzel
,
C.
,
Bedi
,
S.
, and
Mann
,
S.
, 2004, “
Triple Tangent Flank Milling of Ruled Surfaces
,”
Comput.-Aided Des.
0010-4485,
36
(
3
), pp.
289
296
.
30.
Chiou
,
J. C.
, 2004, “
Accurate Tool Position for Five-Axis Ruled Surface Machining by Swept Envelope Approach
,”
Comput.-Aided Des.
0010-4485,
36
(
10
), pp.
967
974
.
31.
Lartigue
,
C.
,
Duc
,
E.
, and
Affouard
,
A.
, 2003, “
Tool Path Deformation in 5-Axis Flank Milling Using Envelope Surface
,”
Comput.-Aided Des.
0010-4485,
35
(
4
), pp.
375
382
.
32.
Gong
,
H.
,
Cao
,
L. X.
, and
Liu
,
J.
, 2005, “
Improved Positioning of Cylindrical Cutter for Flank Milling Ruled Surfaces
,”
Comput.-Aided Des.
0010-4485,
37
(
12
), pp.
1205
1213
.
33.
1983, Technical Drawings-Geometrical Tolerancing, ISO/R 1101.
34.
1982, Standard A. N. S. I. Y14.5, Dimensioning and Tolerancing, The American Society of Engineers.
35.
Podshivalov
,
L.
, and
Fischer
,
A.
, 2008, “
Modeling an Envelope Generated by 3D Volumetric NC Tool Motion
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
38
(
9–10
), pp.
949
957
.
36.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer
,
New York
.
37.
Chen
,
H. Y.
, and
Pottmann
,
H.
, 1999, “
Approximation by Ruled Surfaces
,”
J. Comput. Appl. Math.
0377-0427,
102
(
1
), pp.
143
156
.
You do not currently have access to this content.