It is well recognized that 3D finite element analysis is inappropriate for analyzing thin structures such as plates and shells. Instead, a variety of highly efficient and specialized 2D methods have been developed for analyzing such structures. However, 2D methods pose serious automation challenges in today’s 3D design environment. Specifically, analysts must manually extract cross-sectional properties from a 3D computer aided design (CAD) model and import them into a 2D environment for analysis. In this paper, we propose two efficient yet easily automatable dual representation methods for analyzing thin plates. The first method exploits standard off-the-shelf 3D finite element packages and achieves high computational efficiency through an algebraic reduction process. In the reduction process, a 3D plate bending stiffness matrix is constructed from a 3D mesh and then projected onto a lower-dimensional space by appealing to standard 2D plate theories. In the second method, the analysis is carried out by integrating 2D shape functions over the boundary of the 3D plate. Both methods do not entail extraction of the cross-sectional properties of the plate. However, the user must identify the plate or thickness direction. The proposed methodologies are substantiated through numerical experiments.

1.
Reissner
,
E.
, 1985, “
Reflections on the Theory of Elastic Plates
,”
Appl. Mech. Rev.
0003-6900,
38
, pp.
1453
1464
.
2.
Jemielita
,
G.
, 1990, “
On Kinematical Assumptions of Refined Theories of Plates: A Survey
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
57
, pp.
1088
1091
.
3.
Wang
,
C. M.
,
Reddy
,
J. N.
, and
Lee
,
K. H.
, 2000,
Shear Deformable Beams and Plates: Relationship to Classical Solutions
,
Elsevier Science
,
London
.
4.
Yang
,
H. T. Y.
,
Saigal
,
S.
,
Masud
,
A.
, and
Kapania
,
R. K.
, 2000, “
A Survey of Recent Shell Finite Element
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
(
1–3
), pp.
101
127
.
5.
Timoshenko
,
S.
, and
Krieger
,
S. W.
, 1959,
Theory of Plates and Shells
,
2nd ed.
,
McGraw-Hill
,
New York
.
6.
Bischoff
,
M.
,
Wall
,
W. A.
,
Beltzinger
,
K. U.
, and
Ramm
,
E.
, 2004, “
Models and Finite Elements for Thin-Walled Structures
,”
Encyclopedia of Computational Mechanics, Volume 2: Solids and Structures
,
E.
Stein
,
R.
Borst
, and
J. R.
Hughes
, eds.,
Wiley
,
New York
, Vol.
2
, Chap. 3.
7.
Hauptmann
,
R.
, and
Schweizerhof
,
K.
, 1998, “
A Systematic Development of ‘Solid-Shell’ Element Formulations for Linear and Non-Linear Analyses Employing Only Displacement Degrees of Freedom
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
, pp.
49
69
.
8.
Hauptmann
,
R.
,
Schweizerhof
,
K.
, and
Doll
,
S.
, 2000, “
Extension of the ‘Solid-Shell’ Concept for Application to Large Elastic and Large Elastoplastic Deformations
,”
Int. J. Numer. Methods Eng.
0029-5981,
49
, pp.
1121
1141
.
9.
Hauptmann
,
R.
,
Doll
,
S.
,
Harnau
,
M.
, and
Schweizerhof
,
K.
, 2001, “
‘Solid-Shell’ Elements With Linear and Quadratic Shape Functions at Large Deformations With Nearly Incompressible Materials
,”
Comput. Struct.
0045-7949,
79
, pp.
1671
1685
.
10.
Sze
,
K. Y.
, and
Yao
,
L. Q.
, 2000, “
A Hybrid Stress ANS Solid-Shell Element and Its Generalization for Smart Structure Modelling. Part I—Solid-Shell Element Formulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
, pp.
545
564
.
11.
Braess
,
D.
, and
Kaltenbacher
,
M.
, 2008, “
Efficient 3D-Finite Element Formulation for Thin Mechanical and Piezoelectric Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
73
, pp.
147
161
.
12.
Dorfmann
,
A.
, and
Nelson
,
R. B.
, 1995, “
Three-Dimensional Finite Element for Analysing Thin Plate/Shell Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
(
20
), pp.
3453
3482
.
13.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
, 1989,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
14.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2005,
The Finite Element Method for Solid and Structural Mechanics
,
6th ed.
,
Elsevier (Butterworth-Heinemann)
,
Oxford, UK
.
15.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
, 2005,
The Finite Element Method: Its Basis and Fundamentals
,
6th ed.
,
Elsevier (Butterworth-Heinemann)
,
Oxford, UK
.
16.
Duan
,
M.
,
Miyamoto
,
Y.
,
Iwasaki
,
S.
, and
Deta
,
H.
, 1999, “
5-Node Hybrid/Mixed Finite Element for Reissner–Mindlin Plate
,”
Finite Elem. Anal. Design
0168-874X,
33
, pp.
167
185
.
17.
Jog
,
C. S.
, 2005, “
A 27-Node Hybrid Brick and a 21-Node Hybrid Wedge Element for Structural Analysis
,”
Finite Elem. Anal. Design
0168-874X,
41
(
11–12
), pp.
1209
1232
.
18.
Jirousek
,
J.
,
Wróblewski
,
A.
,
Qin
,
Q. H.
, and
He
,
X. Q.
, 1995, “
A Family of Quadrilateral Hybrid-Trefftz p-Elements for Thick Plate Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
127
, pp.
315
344
.
19.
Düster
,
A.
,
Bröker
,
H.
, and
Rank
,
E.
, 2001, “
The p-Version of Finite Element Method for Three-Dimensional Curved Thin Walled Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
(
7
), pp.
673
703
.
20.
Jorabchi
,
K.
, and
Suresh
,
K.
, 2009, “
Nonlinear Algebraic Reduction for Snap-Fit Simulation
,”
ASME J. Mech. Des.
0161-8458,
131
(
6
), p.
061004
.
21.
Jorabchi
,
K.
,
Danczyk
,
J.
, and
Suresh
,
K.
, 2009, “
Efficient and Automated Analysis of Potentially Slender Structures
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
9
(
4
), p.
041001
.
22.
Mishra
,
V.
, and
Suresh
,
K.
, 2009, “
Efficient Analysis of 3-D Plates via Algebraic Reduction
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, San Diego, CA.
23.
Shames
,
I. H.
, and
Dym
,
C. L.
, 1985,
Energy and Finite Element Methods in Structural Mechanics
,
Hemisphere
,
New York
.
24.
Dow
,
J.
, and
Byrd
,
D. E.
, 1988, “
The Identification and Elimination of Artificial Stiffening Errors in Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
(
3
), pp.
743
762
.
25.
Yuqiu
,
L.
,
Xiaoming
,
B.
,
Zhifei
,
L.
, and
Yin
,
X.
, 1995, “
Generalized Conforming Plate Bending Elements Using Point and Line Compatibility Conditions
,”
Comput. Struct.
0045-7949,
54
(
4
), pp.
717
723
.
26.
Tautges
,
T. J.
, 2001, “
The Generation of Hexahedral Meshes for Assembly Geometry: Survey and Progress
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2617
2642
.
27.
Mishra
,
V.
, and
Suresh
,
K.
, 2009, “
A Dual-Representation Strategy for the Virtual Assembly of Thin Deformable Objects
,”
Virtual Reality
, in press.
28.
Taylor
,
R. L.
, and
Govindjee
,
S.
, 2004, “
Solution of Clamped Rectangular Plate Problems
,”
Commun. Numer. Methods Eng.
1069-8299,
20
, pp.
757
765
.
29.
Blevins
,
R. D.
, 1995,
Formulas for Natural Frequency and Mode Shape
,
Krieger
,
Malabar, FL
.
You do not currently have access to this content.