A knowledge-based computer-aided design tool for microelectromechanical systems (MEMS) design synthesis called case-based synthesis of MEMS (CaSyn-MEMS) has been developed. MEMS-based technologies have the potential to revolutionize many consumer products and to create new market opportunities in areas such as biotechnology, aerospace, and data communications. However, the commercialization of MEMS still faces many challenges due to a lack of efficient computer-aided design tools that can assist designers during the early conceptual phases of the design process. CaSyn-MEMS combines a case-based reasoning (CBR) algorithm and a MEMS case library with parametric optimization and a multi-objective genetic algorithm (MOGA) to synthesize new MEMS design topologies that meet or improve upon a designer’s specifications. CBR is an artificial intelligence methodology that uses past design solutions and adapts them to solve current problems. Having the ability to draw upon past design knowledge is advantageous to MEMS designers, allowing reuse and modification of previously successful designs to accelerate the design process. To enable knowledge reuse, a hierarchical MEMS case library has been created. A reasoning algorithm retrieves cases with solved problems similar to the current design problem. Focusing on resonators as a case study, case retrieval demonstrated an 82% success rate. Using the retrieved cases, approximate design solutions were proposed by first adapting cases with parametric optimization, resulting in a 25% reduction in design area on average while bringing designs within 2% of the frequency goal. In situations where parametric optimization was not sufficient, a more radical design adaptation was performed through the use of MOGA. CBR provided MOGA with good starting points for optimization, allowing efficient convergence to higher quantities of Pareto optimal design concepts while reducing design area by up to 43% and meeting frequency goals within 5%.

1.
Zhang
,
Y.
,
Kamalian
,
R.
,
Agogino
,
A. M.
, and
Séquin
,
C. H.
, 2006, “
Design Synthesis of Microelectromechanical Systems Using Genetic Algorithms With Component-Based Genotype Representation
,”
Proceedings of the Eighth Annual Conference on Genetic and Evolutionary Computation
,
ACM
,
New York
, pp.
731
738
.
2.
Zhou
,
N.
,
Zhu
,
B.
,
Agogino
,
A. M.
, and
Pister
,
K. S. J.
, 2001, “
Evolutionary Synthesis of Microelectromechanical Systems (MEMS) Design
,”
Proceedings of ANNIE 2001: Intelligent Engineering System through Artificial Networks
,
ASME
,
New York
, Vol.
11
, pp.
197
202
.
3.
Kamalian
,
R.
,
Agogino
,
A. M.
, and
Takagi
,
H.
, 2004, “
The Role of Constraints and Human Interaction in Evolving MEMS Designs: Microresonator Case Study
,”
Proceedings of the 2004 ASME International Design Engineering Technical Conferences
, Paper No. DETC2004-57462.
4.
Nathanson
,
H. C.
,
Newell
,
W. E.
,
Wickstrom
,
R. A.
, and
Davis
,
J. R.
, 1967, “
The Resonant Gate Transistor
,”
IEEE Trans. Electron Devices
0018-9383,
14
(
3
), pp.
117
133
.
5.
Dixon
,
R. H.
, and
Bouchaud
,
J.
, 2006, “
Markets and Applications for MEMS Inertial Sensors
,”
Proceedings of SPIE: MEMS/MOEMS Components and Their Applications III
, Vol.
6113
, Paper No. 611306.
6.
Imamura
,
T.
,
Katayama
,
M.
,
Ikegawa
,
Y.
,
Ohwe
,
T.
,
Koishi
,
R.
, and
Koshikawa
,
T.
, 1998, “
MEMS-Based Integrated Head/Actuator/Slider for Hard Disk Drives
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
3
(
3
), pp.
166
174
.
7.
Van Kessel
,
P. F.
,
Hornbeck
,
L. J.
,
Meier
,
R. E.
, and
Douglass
,
M. R.
, 1998, “
A MEMS-Based Projection Display
,”
Proc. IEEE
0018-9219,
86
(
8
), pp.
1687
1704
.
8.
Kamisuki
,
S.
,
Hagata
,
T.
,
Tezuka
,
C.
,
Nose
,
Y.
,
Fujii
,
M.
, and
Atobe
,
M.
, 1998, “
A Low Power, Small, Electrostatically-Driven Commercial Inkjet Head
,”
Proceedings of the 11th Annual International Workshop on Micro Electro Mechanical Systems
, pp.
63
68
.
9.
Maseeh
,
F.
, 2000,
Reducing MEMS Product Development and Commercialization Time
,
Future Fab International
,
Mill Valley, CA
, Vol.
8
.
10.
Minahan
,
T. A.
, 2004, “
Product Development in Consumer Industries Benchmark Report: Leading the Next Wave of Growth
,” Aberdeen Group.
11.
Antonsson
,
E. K.
, ed., 1995, “
Structured Design Methods for MEMS–Final Report
,”
NSF Sponsored Workshop on Structured Design Methods for MEMS
, pp.
63
68
.
12.
Fedder
,
G. K.
, 1999, “
Structured Design of Integrated MEMS
,”
Proceedings of the 12th IEEE International Conference on MicroElectroMechanical Systems
, pp.
1
8
.
13.
Koh
,
H. Y.
,
Séquin
,
C. H.
, and
Gray
,
P. R.
, 1990, “
OPASYN: A Compiler for CMOS Operational Amplifiers
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
9
(
2
), pp.
113
125
.
14.
Stone
,
D. C.
,
Schroeder
,
J. E.
, and
Smith
,
A. R.
, 1984, “
Analog CMOS Building Blocks for Custom and Semicustom Applications
,”
IEEE J. Solid-State Circuits
0018-9200,
19
(
1
), pp.
55
61
.
15.
Clark
,
J. V.
,
Zhou
,
N.
,
Bindel
,
D.
,
Schenato
,
L.
,
Wu
,
W.
,
Demmel
,
J.
, and
Pister
,
K. S. J.
, 2000, “
3D MEMS Simulation Modeling Using Modified Nodal Analysis
,”
Proceedings of the 2000 Microscale Systems: Mechanics and Measurements Symposium
, pp.
68
75
.
16.
Kamalian
,
R.
,
Zhang
,
Y.
,
Agogino
,
A. M.
, and
Takagi
,
H.
, 2006, “
Evolutionary Synthesis of Micromachines Using Supervisory Multiobjective Interactive Evolutionary Computation
,”
Advances in Machine Learning and Cybernetics
,
Springer
,
Berlin
, Vol.
3930
, pp.
428
437
.
17.
Mukherjee
,
T.
,
Zhou
,
Y.
, and
Fedder
,
G.
, 1999, “
Automated Optimal Synthesis of Microaccelerometers
,”
Proceedings of the 12th IEEE International Conference on MicroElectroMechanical Systems
, pp.
326
331
.
18.
Mukherjee
,
T.
, and
Fedder
,
G. K.
, 1999, “
Hierarchical Mixed-Domain Circuit Simulation, Synthesis and Extraction Methodology for MEMS
,”
J. VLSI Signal Proc. Syst. Signal, Image, Video Technol.
0922-5773,
21
(
3
), pp.
233
249
.
19.
Agarwal
,
M.
,
Cagan
,
J.
, and
Stiny
,
G.
, 2000, “
A Micro Language: Generating MEMS Resonators by Using a Coupled Form-Function Shape Grammar
,”
Environ. Plan. B: Plan. Des.
0265-8135,
27
(
4
), pp.
615
626
.
20.
Wang
,
J.
,
Fan
,
Z.
,
Terpenny
,
J. P.
, and
Goodman
,
E. D.
, 2005, “
Knowledge Interaction With Genetic Programming in Mechatronics Systems Design Using Bond Graphs
,”
IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
1094-6977,
35
(
2
), pp.
172
182
.
21.
Li
,
H.
, and
Antonsson
,
E. K.
, 1998, “
Evolutionary Techniques in MEMS Synthesis
,”
Proceedings of the 1998 ASME Design Engineering Technical Conferences
, Paper No. DETC98/MECH-5840.
22.
Ma
,
L.
, and
Antonsson
,
E. K.
, 2000, “
Automated Mask-Layout and Process Synthesis for MEMS
,”
Proceedings of the International Conference on Modeling and Simulation of Microsystems
, pp.
20
23
.
23.
Li
,
J.
,
Gao
,
S.
, and
Liu
,
Y.
, 2007, “
Solid-Based CAPP for Surface Micromachined MEMS Devices
,”
Comput.-Aided Des.
0010-4485,
39
(
3
), pp.
190
201
.
24.
Kolodner
,
J.
, 1993,
Case-Based Reasoning
,
Morgan Kaufmann
,
San Mateo, CA
.
25.
Shank
,
R.
, and
Abelson
,
R.
, 1997,
Scripts, Plans, Goals and Understanding: An Inquiry Into Human Knowledge Structures
,
Lawrence Erlbaum
,
Hillsdale, NJ
.
26.
Watson
,
I.
, and
Marir
,
F.
, 1994, “
Case-Based Reasoning: A Review
,”
Knowl. Eng. Rev.
0269-8889,
9
(
4
), pp.
327
354
.
27.
Maher
,
M. L.
, and
Gómez de Silva Garza
,
A.
, 1997, “
Case-Based Reasoning in Design
,”
IEEE Expert
0885-9000,
12
(
2
), pp.
34
41
.
28.
Narasimhan
,
S.
,
Sycara
,
K. P.
, and
Navin-Chandra
,
D.
, 1997, “
Representation and Synthesis of Non-Monotonic Mechanical Devices
,”
Issues and Applications of Case-Based Reasoning in Design
,
M.
Maher
and
P.
Pu
, eds.,
Lawrence Erlbaum Associates
,
Hillsdale, NJ
, pp.
187
222
.
29.
Goel
,
A. K.
,
Bhatta
,
S.
, and
Stroulia
,
E.
, 1997, “
Kritik: An Early Case-Based Design System
,”
Issues and Applications of Case-Based Reasoning in Design
,
M.
Maher
and
P.
Pu
, eds.,
Lawrence Erlbaum Associates
,
Hillsdale, NJ
, pp.
87
132
.
30.
Maher
,
M. L.
, and
Gomez de Silva Garza
,
A.
, 1996, “
Developing Case-Based Reasoning for Structural Design
,”
IEEE Expert
0885-9000,
11
(
3
), pp.
42
52
.
31.
Hennessy
,
D.
, and
Hinkle
,
D.
, 1992, “
Applying Case-Based Reasoning to Autoclave Loading
,”
IEEE Expert
0885-9000,
7
(
5
), pp.
21
26
.
32.
Tsai
,
C. -Y.
,
Chiu
,
C. -C.
, and
Chen
,
J. -S.
, 2005, “
A Case-Based Reasoning System for PCB Defect Prediction
,”
Expert Sys. Applic.
0957-4174,
28
(
4
), pp.
813
822
.
33.
Boyle
,
I. M.
,
Rong
,
K.
, and
Brown
,
D. C.
, 2006, “
CAFixD: A Case-Based Reasoning Fixture Design Method. Framework and Indexing Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
1
), pp.
40
48
.
34.
Tor
,
S. B.
,
Britton
,
G. A.
, and
Zhang
,
W. Y.
, 2003, “
Indexing and Retrieval in Metal Stamping Die Design Using Case-Based Reasoning
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
3
(
4
), pp.
353
362
.
35.
Cobb
,
C. L.
, and
Agogino
,
A. M.
, 2006, “
Case-Based Reasoning for the Design of Micro-Electro-Mechanical Systems
,”
Proceedings of the 2006 ASME International Design Engineering Technical Conferences
, Paper No. DETC2006-99120.
36.
Cobb
,
C. L.
,
Zhang
,
Y.
,
Agogino
,
A. M.
, and
Mangold
,
J.
, 2008, “
Knowledge-Based Evolutionary Linkage in MEMS Design Synthesis
,”
Linkage in Evolutionary Computation
,
Y. -P.
Chen
and
M. -H.
Lim
, eds.,
Springer
,
Berlin/Heidelberg
, Vol.
157
, pp.
461
483
.
37.
Gómez de Silva Garza
,
A.
, and
Maher
,
M. L.
, 1999, “
An Evolutionary Approach to Case Adaptation
,”
Lecture Notes in Artificial Intelligence
,
K. -D.
Althoff
,
R.
Bergmann
, and
L. K.
Branting
, eds., Vol.
1650
, pp.
162
173
.
38.
Domer
,
B.
, and
Smith
,
I. F. C.
, 2005, “
An Active Structure That Learns
,”
J. Comput. Civ. Eng.
0887-3801,
19
(
1
), pp.
16
24
.
39.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
The University of Michigan Press
,
Ann Arbor, MI
.
40.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley/Longman
,
Boston, MA
.
41.
Zhang
,
Y.
, and
Agogino
,
A. M.
, 2010, “
Interactive Hybrid Evolutionary Computation for MEMS Design Synthesis
,”
Advances in Neural Network Research and Applications
,
Z.
Zeng
and
J.
Wang
, eds.,
Springer
, Berlin/Heidelberg, Vol.
67
, pp.
211
218
.
You do not currently have access to this content.