This paper considers the problem of inferring the geometry of an object from values of the signed distance sampled on a uniform grid. The problem is motivated by the desire to effectively and efficiently model objects obtained by 3D imaging technology such as magnetic resonance, computed tomography, and positron emission tomography. Techniques recently developed for automated segmentation convert intensity to signed distance, and the voxel structure imposes the uniform sampling grid. The specification of the signed distance function (SDF) throughout the ambient space would provide an implicit and function-based representation (f-rep) model that uniquely specifies the object, and we refer to this particular f-rep as the signed distance function representation (SDF-rep). However, a set of uniformly sampled signed distance values may uniquely determine neither the distance function nor the shape of the object. Here, we employ essential properties of the signed distance to construct the upper and lower bounds on the allowed variation in signed distance, which combine to produce interval-valued extensions of the signed distance function. We employ an interval extension of the signed distance function as an interval SDF-rep that defines the range of object geometries that are consistent with the sampled SDF data. The particular interval extensions considered include a tight global extension and more computationally efficient local extensions that provide useful criteria for root exclusion/isolation. To illustrate a useful application of the interval bounds, we present a reliable approach to top-down octree membership classification for uniform samplings of signed distance functions.

1.
Shapiro
,
L.
, and
Stockman
,
G.
, 2001,
Computer Vision
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
279
325
.
2.
Bulu
,
H.
, and
Alpkocak
,
A.
, 2007, “
Comparison of 3D Segmentation Algorithms for Medical Imaging
,”
20th IEEE Symposium on Computer-Based Medical Systems (CBMS ‘07)
, Paper No. 0-7695-2905-4/07.
3.
Hoffmann
,
C.
, 1989,
Geometric and Solid Modeling: An Introduction
,
Morgan Kaufmann
,
San Francisco, CA
.
4.
Lee
,
K. -W.
, 1999,
Principles of CAD/CAM/CAE Systems
,
Addison-Wesley
,
Reading, MA
.
5.
Nielsen
,
G.
, 2000, “
Volume Modeling
,”
Volume Graphics
,
M.
Chen
,
N.
Kaufman
, and
R.
Yagel
, eds.,
Springer
,
New York
, pp.
29
48
.
6.
Bloomenthal
,
J.
, 1997,
Introduction to Implicit Surfaces
,
Morgan Kaufmann
,
San Francisco, CA
.
7.
Shapiro
,
V.
, 1994, “
Real Functions for Representation of Rigid Solids
,”
Comput. Aided Geom. Des.
0167-8396,
11
, pp.
153
175
.
8.
Ricci
,
A.
, 1973, “
A Constructive Geometry for Computer Graphics
,”
Comput. J.
0010-4620,
16
(
2
), pp.
157
160
.
9.
Ensz
,
M.
,
Storti
,
D.
, and
Ganter
,
M.
, 1998, “
Implicit Methods for Geometry Creation
,”
Int. J. Comput. Geom. Appl.
0218-1959,
8
(
5–6
), pp.
509
536
.
10.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
, 1995, “
Function Representation in Geometric Modeling: Concepts, Implementation and Applications
,”
Image Vis. Comput.
0262-8856,
11
, pp.
429
446
.
11.
Storti
,
D.
,
Ganter
,
M.
,
Ledoux
,
W.
,
Ching
,
R.
,
Hu
,
Y. P.
, and
Haynor
,
D.
, 2007, “
Artifact vs. Anatomy: Dealing With Conflict of Geometric Modeling Descriptions
,”
Proceedings of the SAE Human Modeling Conference
, Seattle, WA, Paper No. 2007-01-2450.
12.
Storti
,
D.
,
Ganter
,
M.
,
Ledoux
,
W.
,
Ching
,
R.
,
Hu
,
Y. P.
, and
Haynor
,
D.
, 2007, “
Wavelet SDF-Reps: Solid Modeling With Volumetric Scans
,”
Proceedings of the 2007 ASME Design Engineering Technical Conferences
, Las Vegas, NV, Paper No. DETC2007-34703.
13.
Hu
,
Y.
,
Haynor
,
D.
,
Fassbind
,
M.
,
Rohr
,
E.
, and
Ledoux
,
W.
, 2006, “
Image Segmentation and Registration for the Analysis of Joint Motion From 3D MRI
,”
Proc. SPIE
0277-786X,
6141
, pp.
133
142
.
14.
Sethian
,
J. A.
, 1999,
Level Set Methods and Fast Marching Methods
,
2nd ed.
,
Cambridge University Press
,
New York
.
15.
Osher
,
S. J.
, and
Fedkiw
,
R. P.
, 2002,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer
,
New York
.
16.
Daubechies
,
I.
, 1992,
Wavelets
(
CBMS-NS Series in Applied Mathematics
),
SIAM
,
Philadelphia, PA
.
17.
Resnikoff
,
H.
, and
Wells
,
R.
, 1998,
Wavelet Analysis: The Scalable Structure of Information
,
Springer-Verlag
,
New York
.
18.
Samet
,
H.
, 1990,
Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS
,
Addison-Wesley
,
Reading, MA
.
19.
Montani
,
C.
, and
Scopigno
,
R.
, 1991, “
Quadtree/Octree-to-Boundary Conversion
,”
Graphics Gems II
,
Academic
,
New York
.
20.
Jones
,
M.
, 2004, “
Distance Field Compression
,”
Journal of WSCG
,
1-3
, pp.
199
204
.
21.
Freytag
,
M.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
, 2006, “
Field Modeling With Sampled Distances
,”
Comput.-Aided Des.
0010-4485,
38
(
2
), pp.
87
100
.
22.
Frisken
,
S.
,
Perry
,
R.
,
Rockwood
,
A.
, and
Jones
,
T.
, 2000, “
Adaptively Sampled Distance Fields: A General Representation of Shape for Computer Graphics
,”
Proceedings of the ACM SIGGRAPH
, pp.
249
254
.
23.
Velho
,
L.
,
Gomes
,
J.
, and
de Figueiredo
,
L. H.
, 2002,
Implicit Objects in Computer Graphics
,
Springer-Verlag
,
New York
, p.
51
.
24.
Whitney
,
H.
, 1957, “
Elementary Structure of Real Algebraic Varieties
,”
Ann. Math.
0003-486X,
66
(
3
), pp.
545
556
.
25.
Blum
,
H.
, 1967, “
A Transformation for Extracting New Descriptors of Shape
,”
Models for the Perception of Speech and Visual Form
,
W.
Warren-Dunn
, ed.,
MIT
,
Cambridge, MA
, pp.
362
381
.
26.
Wolter
,
F. -E.
, 1995, “
Cut Locus and Medial Axis in Global Shape Interrogation and Representation
,” MIT, Department of Ocean Engineering, Design Laboratory Memorandum 92-2.
27.
Storti
,
D. W.
,
Turkiyyah
,
G. M.
,
Ganter
,
M. A.
,
Lim
,
C. T.
, and
Stal
,
D. M.
, 1997, “
Skeleton-Based Modeling Operations on Solids
,”
Proceedings of the ACM Fourth Symposium on Solid Modeling
, Atlanta, GA, pp.
141
153
.
28.
Jones
,
M. W.
,
Baerentzen
,
J. A.
, and
Sramek
,
M.
, 2006, “
3D Distance Fields: A Survey of Techniques and Applications
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
12
(
4
), pp.
581
599
.
29.
Chang
,
J.
,
Ganter
,
M.
, and
Storti
,
D.
, 2000, “
Interval Method for Interrogation of Implicit Solid Models
,”
Proceedings of the ASME Design Engineering Technical Conferences
, Baltimore, MD, Paper No. DETC2000/DAC-14290.
30.
Moore
,
R. E.
, 1979,
Methods and Applications of Interval Analysis
,
SIAM
,
Philadelphia, PA
.
31.
Hansen
,
E. R.
, 1992,
Global Optimization Using Interval Arithmetic
,
Dekker
,
New York
.
32.
Kahan
,
W. M.
, 1968, “
A More Complete Interval Arithmetic
,”
Lecture Notes for an Engineering Summer Course in Numerical Analysis
, University of Michigan.
33.
Turkiyyah
.
G.
,
Storti
,
D.
,
Ganter
,
M.
,
Chen
,
H.
, and
Vimawala
,
M
., 1997, “
An Accelerated Triangulation Method for Computing the Skeletons of Free-Form Solid Models
,”
Comput.-Aided Des.
0010-4485,
29
(
1
), pp.
5
19
.
34.
Storti
,
D.
, and
Ganter
,
M.
, 2008, “
Interval Extensions of Signed Distance Functions: Uniform Samplings and the Range of Associated Implicit Objects
,”
Proceedings of the 34th ASME Design Engineering Conference
, New York, Paper No. DETC2008/DAC-49604.
You do not currently have access to this content.