In this paper, we present the methods to generate a stable and realistic simulator for dental surgery. First, a simplified force model is derived from grinding theory by considering the complex bur shape and dental handpiece’s dynamic behavior. While the force model can be evaluated very fast to fulfill the high update rate of haptic rendering, it also explains basic haptic sensation features in tooth preparation operation. Second, as direct rendering of this damping-like force model may induce instability of the haptic device, we apply a virtual coupling based method to guarantee the stability in haptic rendering. Furthermore, implicit integration of the bur’s motion equation is utilized to ensure numerical stability. Third, to overcome force discontinuity caused by locally removing tooth materials, we define a two-layer based representation for the bur, where the boundary voxels are adopted to compute forces and the interior voxels are employed to remove materials from teeth. The experimental results agree with the real sensation described by experienced dentists.

1.
Chen
,
L. -Y.
,
Fujimoto
,
H.
,
Miwa
,
K.
,
Abe
,
T.
,
Sumi
,
A.
, and
Ito
,
Y.
, 2003, “
A Dental Training System Using Virtual Reality
.”
IEEE International Symposium on Computational Intelligence in Robotics and Automation
, pp.
430
434
.
2.
Wang
,
D.
,
Zhang
,
Y.
,
Wang
,
Y.
,
Lee
,
Y. -S.
,
Lu
,
P.
, and
Wang
,
Y.
, 2005, “
Cutting on Triangle Mesh: Local Model-Based Haptic Display for Dental Preparation Surgery Simulation
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
11
(
6
), pp.
671
683
.
3.
Yau
,
H.
,
Tsou
,
L.
, and
Tsai
,
M.
, 2006, “
Octree-Based Virtual Dental Training System With a Haptic Device
,”
Computer-Aided Design and Applications
,
3
(
1–4
), pp.
415
424
.
4.
Kim
,
L.
, and
Park
,
S. H.
, 2006, “
Haptic Interaction and Volume Modeling Techniques for Realistic Dental Simulation
,”
Visual Comput.
0178-2789,
22
(
2
), pp.
90
98
.
5.
Marras
,
I.
,
Papaleontiou
,
L.
,
Nikolaidis
,
N.
,
Lyroudia
,
K.
, and
Pitas
,
I.
, 2006, “
Virtual Dental Patient: A System for Virtual Teeth Drilling
,”
IEEE International Conference on Multimedia and Expo
, pp.
665
668
.
6.
Kolesnikov
,
M.
,
Zefran
,
M.
,
Steinberg
,
A.
, and
Bashook
,
P.
, 2009, “
Periosim: Haptic Virtual Reality Simulator for Sensorimotor Skill Acquisition in Dentistry
,”
IEEE International Conference on Robotics and Automation—ICRA09
, pp.
689
694
.
7.
von Sternberg
,
N.
,
Bartsch
,
M.
,
Petersik
,
A.
,
Wiltfang
,
J.
,
Sibbersen
,
W.
,
Grindel
,
T.
,
Tiede
,
U.
,
Warnke
,
P.
,
Heiland
,
M.
,
Russo
,
P.
,
Terheyden
,
H.
,
Pohlenz
,
P.
, and
Springer
,
I.
, 2007, “
Learning by Doing Virtually
,”
Int. J. Oral Maxillofac Surg.
0901-5027,
36
(
5
), pp.
386
390
.
8.
Salisbury
,
K.
,
Conti
,
F.
, and
Barbagli
,
F.
, 2004, “
Haptic Rendering: Introductory Concepts
,”
IEEE Comput. Graphics Appl.
0272-1716,
24
(
2
), pp.
24
32
.
9.
Leu
,
M. C.
,
Niu
,
Q.
, and
Chi
,
X.
, “
Virtual Bone Surgery
,”
Virtual Prototyping and Bio Manufacturing in Medical Applications
,
Springer
,
New York
, Chap. 2, pp.
21
44
.
10.
Pflesser
,
B.
,
Petersik
,
A.
,
Tiede
,
U.
,
Hohne
,
K. H.
, and
Leuwer
,
R.
, 2002, “
Volume Cutting for Virtual Petrous Bone Surgery
,”
Comput. Aided Surg.
1092-9088,
7
(
2
), pp.
74
83
.
11.
Morris
,
D.
,
Sewell
,
C.
,
Barbagli
,
F.
,
Salisbury
,
K.
,
Blevins
,
N. H.
, and
Girod
,
S.
, 2006, “
Visuohaptic Simulation of Bone Surgery for Training and Evaluation
,”
IEEE Comput. Graphics Appl.
0272-1716,
26
(
6
), pp.
48
57
.
12.
Eriksson
,
M.
,
Dixon
,
M.
, and
Wikander
,
J.
, 2006, “
A Haptic VR Milling Surgery Simulator - Using High-Resolution CT-Data
,”
Medicine Meets Virtual Reality 14: Accelerating Change in Healthcare: Next Medical Toolkit
,
IOS Press
,
Amsterdam, Netherlands
, Vol.
14
, pp.
138
143
.
13.
Acosta
,
E.
, and
Liu
,
A.
, 2007, “
Real-Time Volumetric Haptic and Visual Burrhole Simulation
,”
IEEE Virtual Reality Conference—VR ’07
,
IEEE Computer Society Press
,
Washington, DC
, pp.
247
250
.
14.
Agus
,
M.
,
Giachetti
,
A.
,
Gobbetti
,
E.
,
Zanetti
,
G.
, and
Zorcolo
,
A.
, 2003, “
Real-Time Haptic and Visual Simulation of Bone Dissection
,”
Presence: Teleoperators and Virtual Environments
,
12
(
1
), pp.
110
122
.
15.
Tsai
,
M. -D.
,
Hsieh
,
M. -S.
, and
Tsai
,
C. -H.
, 2007, “
Bone Drilling Haptic Interaction for Orthopedic Surgical Simulator
,”
Comput. Biol. Med.
0010-4825,
37
(
12
), pp.
1709
1718
.
16.
Avila
,
R. S.
, and
Sobierajski
,
L. M.
, 1996, “
A Haptic Interaction Method for Volume Visualization
,”
VIS ’96: Proceedings of the Seventh Conference on Visualization ’96
,
IEEE Computer Society Press
,
Los Alamitos, CA
, pp.
197
205
.
17.
McNeely
,
W. A.
,
Puterbaugh
,
K. D.
, and
Troy
,
J. J.
, 1999, “
Six Degree-of-Freedom Haptic Rendering Using Voxel Sampling
,”
SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques
,
ACM Press/Addison-Wesley Publishing Co.
,
New York
, pp.
401
408
.
18.
Colgate
,
J.
, and
Schenkel
,
G.
, 1997, “
Passivity of a Class of Sampled-Data Systems: Application to Haptic Interfaces
,”
J. Rob. Syst.
0741-2223,
14
(
1
), pp.
37
47
.
19.
Liu
,
G.
,
Zhang
,
Y.
,
Wang
,
D.
, and
Townsend
,
W. T.
, 2008, “
Stable Haptic Interaction Using a Damping Model to Implement a Realistic Tooth-Cutting Simulation for Dental Training
,”
Virtual Reality
,
12
(
2
), pp.
99
106
.
20.
Liu
,
G.
,
Zhang
,
Y.
, and
Townsend
,
W. T.
, 2008, “
Force Modelling for Tooth Preparation in Dental Training System
,”
Virtual Reality
,
12
(
3
), pp.
125
136
.
21.
Wu
,
J.
,
Yu
,
G.
,
Wang
,
D.
,
Zhang
,
Y.
, and
Wang
,
C. C. L.
, 2009, “
Voxel-Based Interactive Haptic Simulation of Dental Drilling
,” ASME Paper No. DETC2009-86661.
22.
Davidson
,
S. R. H.
, and
James
,
D. F.
, 2003, “
Drilling in Bone: Modeling Heat Generation and Temperature Distribution
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
305
314
.
23.
Moghaddam
,
M.
,
Nahvi
,
A.
,
Arbabtafti
,
M.
, and
Mah-vash
,
M.
, 2008, “
A Physically Realistic Voxel-Based Method for Haptic Simulation of Bone Machining
,”
EuroHaptics ’08: Proceedings of the Sixth International Conference on Haptics
,
Springer-Verlag
,
New York
, pp.
651
660
.
25.
Malkin
,
S.
, 1989,
Grinding Technology Theory and Applications of Machining With Abrasives
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
26.
Dyson
,
J. E.
, and
Darvell
,
B. W.
, 1999, “
Torque, Power and Efficiency Characterization of Dental Air Turbine Handpieces
,”
J. Dent.
0300-5712,
27
(
8
), pp.
573
586
.
27.
Colgate
,
J.
,
Stanley
,
M.
, and
Brown
,
J.
, 1995, “
Issues in the Haptic Display of Tool Use
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
3
, pp.
140
145
.
28.
Otaduy
,
M. A.
, and
Lin
,
M. C.
, 2006,
High Fidelity Haptic Rendering (Synthesis Lectures on Computer Graphics and Animation)
,
Morgan and Claypool
,
San Rafael, CA
.
29.
Otaduy
,
M. A.
, and
Lin
,
M. C.
, 2005, “
Stable and Responsive Six-Degree-of-Freedom Haptic Manipulation Using Implicit Integration
,”
The World Haptics Conference
,
IEEE Computer Society
,
Washington, DC
, pp.
247
256
.
30.
Baraff
,
D.
, and
Witkin
,
A.
, 1998, “
Large Steps in Cloth Simulation
,”
SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques
, ACM, pp.
43
54
.
31.
Lorensen
,
W. E.
, and
Cline
,
H. E.
, 1987, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
Computer Graphics
0097-8930,
21
(
4
), pp.
163
169
.
32.
Plaskos
,
C.
,
Hodgson
,
A. J.
, and
Cinquin
,
P.
, 2003, “
Modelling and Optimization of Bone-Cutting Forces in Orthopaedic Surgery
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2003
, pp.
254
261
.
33.
Okamura
,
A. M.
,
Kuchenbecker
,
K. J.
, and
Mahvash
,
M.
, 2008, “
Measurement-Based Modeling for Haptic Rendering
,”
Haptic Rendering: Foundations, Algorithms, and Applications
,
AK Peters
,
Wellesley, MA
, Chap. 21, pp.
443
467
.
You do not currently have access to this content.