Methods to implement stochastic simulations on the graphics processing unit (GPU) have been developed. These algorithms are used in a simulation of microassembly and nanoassembly with optical tweezers, but are also directly compatible with simulations of a wide variety of assembly techniques using either electrophoretic, magnetic, or other trapping techniques. Significant speedup is possible for stochastic particle simulations when using the GPU, included in most personal computers (PCs), rather than the central processing unit (CPU) that handles most calculations. However, a careful analysis of the accuracy and precision when using the GPU in stochastic simulations is lacking and is addressed here. A stochastic simulation for spherical particles has been developed and mapped onto stages of the GPU hardware that provide the best performance. The results from the CPU and GPU implementation are then compared with each other and with well-established theory. The error in the mean ensemble energy and the diffusion constant is measured for both the CPU and the GPU implementations. The time taken to complete several simulation experiments on each platform has also been measured and the speedup attained by the GPU is then calculated.

1.
Dominik
,
G.
,
Robert
,
S.
, and
Stefan
,
T.
, 2005, “
Accelerating Double Precision FEM Simulations With GPUs
,”
Proceedings of the 18th Symposium on Simulation Technique (ASIM 2005)
, pp.
139
144
.
2.
2006, Technical Brief: NVIDIA GeForce 8800, GPU Architecture Overview.
3.
Spitz
,
S.
,
Spyridi
,
A.
, and
Requicha
,
A.
, 1999, “
Accessibility Analysis for Planning of Dimensional Inspection With Coordinate Measuring Machines
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
4
), pp.
714
727
.
4.
Foskey
,
M.
,
Lin
,
M. C.
, and
Manocha
,
D.
, 2003, “
Efficient Computation of a Simplified Medial Axis
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
3
(
4
), pp.
274
284
.
5.
Priyadrashi
,
A.
, and
Gupta
,
S.
, 2006, “
Finding Mold-Piece Regions Using Computer Graphics Hardware
,”
Geometric Modeling and Processing Conference
, Pittsburgh, PA.
6.
Khardekar
,
R.
,
Burton
,
G.
, and
McMains
,
S.
, 2006, “
Finding Feasible Mold Parting Directions Using Graphics Hardware
,”
Comput.-Aided Des.
0010-4485,
38
(
4
), pp.
327
341
.
7.
Kipfer
,
P.
,
Segal
,
M.
, and
Westermann
,
R.
, 2004, “
Uberflow: A GPU-Based Particle Engine
,”
HWWS ‘04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware
, pp.
115
122
.
8.
Kolb
,
A.
, and
Cuntz
,
N.
, 2005, “
Dynamic Particle Coupling for GPU-Based Fluid Simulation
,”
Proceedings of the 18th Symposium on Simulation Technique
, pp.
722
727
.
9.
Ashkin
,
A.
, 1992, “
Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime
,”
Biophys. J.
0006-3495,
61
(
2
), pp.
569
582
.
10.
Fällman
,
E.
, and
Axner
,
O.
, 1997, “
Design for Fully Steerable Dual-Trap Optical Tweezers
,”
Appl. Opt.
0003-6935,
36
, pp.
2107
2113
.
11.
Wang
,
M. D.
,
Schnitzer
,
M. J.
,
Yin
,
H.
,
Landick
,
R.
,
Gelles
,
J.
, and
Block
,
S. M.
, 1998, “
Force and Velocity Measured for Single Molecules of RNA Polymerase
,”
Science
0036-8075,
282
(
5390
), pp.
902
907
.
12.
Finer
,
J. T.
,
Simmons
,
R. M.
, and
Spudich
,
J. A.
, 1994, “
Single Myosin Molecule Mechanics: Piconewton Forces and Nanometre Steps
,”
Nature (London)
0028-0836,
368
(
6467
), pp.
113
119
.
13.
Balijepalli
,
A.
,
Lebrun
,
T. W.
,
Gagnon
,
C.
,
Lee
,
Y.
, and
Dagalakis
,
N.
, 2005, “
A Modular Architecture for Agile Assembly of Nano-Components Using Optical Tweezers
,”
Proc. SPIE
0277-786X,
5908
, p.
59080H
.
14.
Lee
,
D.
,
LeBrun
,
T. W.
,
Balijepalli
,
A.
,
Gorman
,
J. J.
,
Gagnon
,
C.
,
Hong
,
D.
, and
Chang
,
E. H.
, 2005, “
Development of Multiple Beam Optical Tweezers
,”
Spring Conference of Korean Society of Precision Engineering (KSPE)
, pp.
1501
1506
.
15.
Langevin
,
P.
, 1908, “
On the Theory of Brownian Motion (“sur la théorie du mouvement brownien”)
,”
C. R. Math. Acad. Sci.
0706-1994,
146
, pp.
530
533
.
16.
Chandrasekhar
,
S.
, 1943, “
Stochastic Problems in Physics and Astronomy
,”
Rev. Mod. Phys.
0034-6861,
15
(
1
), pp.
1
89
.
17.
Weissbluth
,
M.
, 1989,
Photon-Atom Interactions
,
Academic
,
Boston, MA
.
18.
Kubo
,
R.
, 1966, “
The Fluctuation-Dissipation Theorem
,”
Rep. Prog. Phys.
0034-4885,
29
(
1
), pp.
255
284
.
19.
Grassia
,
P.
, 2001, “
Dissipation, Fluctuations, and Conservation Laws
,”
Am. J. Phys.
0002-9505,
69
(
2
), pp.
113
119
.
20.
Gillespie
,
D. T.
, 1993, “
Fluctuation and Dissipation in Brownian Motion
,”
Am. J. Phys.
0002-9505,
61
(
12
), pp.
1077
1083
.
21.
Brańka
,
A. C.
, and
Heyes
,
D. M.
, 1998, “
Algorithms for Brownian Dynamics Simulation
,”
Phys. Rev. E
1063-651X,
58
(
2
), pp.
2611
2615
.
22.
Zhang
,
G.
, and
Schlick
,
T.
, 1995, “
Implicit Discretization Schemes for Langevin Dynamics
,”
Mol. Phys.
0026-8976,
84
(
6
), pp.
1077
1098
.
23.
Berendsen
,
H. J. C.
, and
Van Gunsteren
,
W. F.
, 1985, “
Practical Algorithms for Dynamic Simulations—Molecular Dynamics Simulation of Statistical Mechanical Systems
,”
Proceedings of the Enricfo Fermi Summer School
, pp.
43
64
.
24.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Clarendon
,
New York, NY
.
25.
Verlet
,
L.
, 1967, “
Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules
,”
Phys. Rev.
0031-899X,
159
, pp.
98
103
.
26.
Pastor
,
R. W.
,
Brooks
,
B. R.
, and
Szabo
,
A.
, 1988, “
An Analysis of the Accuracy of Langevin and Molecular Dynamics Algorithms
,”
Mol. Phys.
0026-8976,
65
(
6
), pp.
1409
1419
.
27.
Swope
,
W. C.
,
Andersen
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
, 1982, “
A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
0021-9606,
76
(
1
), pp.
637
649
.
28.
Owens
,
J. D.
,
Luebke
,
D.
,
Govindaraju
,
N.
,
Harris
,
M.
,
Krüger
,
J.
,
Lefohn
,
A. E.
, and
Purcell
,
T. J.
, 2005, “
A Survey of General-Purpose Computation on Graphics Hardware
,”
Proceedings of the Eurographics 2005, State of the Art Reports
, pp.
21
51
.
29.
Kilgariff
,
E.
, and
Fernando
,
R.
, 2005, “
The GeForce 6 Series GPU Architecture
,”
GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation
,
M.
Pharr
and
R.
Fernando
, eds.,
Addison-Wesley
,
Reading, MA
, Chap. 30.
30.
Buck
,
I.
,
Foley
,
T.
,
Horn
,
D.
,
Sugerman
,
J.
,
Fatahalian
,
K.
,
Houston
,
M.
, and
Hanrahan
,
P.
, 2004, “
Brook for GPUs: Stream Computing on Graphics Hardware
,”
Proceedings of the ACM SIGGRAPH 2004 Papers
, pp.
777
786
.
31.
Sumanaweera
,
T.
, and
Liu
,
D.
, 2005, “
Medical Image Reconstruction With the FFT
,”
GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation
,
P.
Matt
and
F.
Randima
, eds.,
Addison-Wesley
,
Reading, MA
, Chap. 48.
32.
Goldberg
,
D.
, 1991, “
What Every Computer Scientist Should Know About Floating-Point Arithmetic
,”
ACM Comput. Surv.
0360-0300,
23
(
1
), pp.
5
48
.
33.
Hillesland
,
K.
, and
Lastra
,
A.
, 2004, “
GPU Floating-Point Paranoia
,”
Proceedings of the ACM Workshop on General Purpose Computing on Graphics Processors
, pp.
C
8
.
34.
Banerjee
,
A. G.
,
Balijepalli
,
A.
,
Gupta
,
S. K.
, and
LeBrun
,
T. W.
, 2008, “
Radial Basis Function Based Simplified Trapping Probability Models for Optical Tweezers
,”
Proceedings of the ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
You do not currently have access to this content.