A new mathematical model for representing the geometric variations of tabs/slots is extended to include probabilistic representations of 1D clearance. The 1D clearance can be determined from multidimensional variations of the medial-plane for a slot or a tab, and from variations of both medial-planes in a tab-slot assembly. The model is compatible with the ASME/ANSI/ISO Standards for geometric tolerances. Central to the new model is a Tolerance-Map (Patent No. 6963824) (T-Map), a hypothetical volume of points that models the range of 3D variations in location and orientation for a segment of a plane (the medial-plane), which can arise from tolerances on size, position, orientation, and form. Here it is extended to model the increases in yield that occur when the optional maximum material condition (MMC) is specified and when tolerances are assigned statistically rather than on a worst-case basis. The frequency distribution of 1D clearance is decomposed into manufacturing bias, i.e., toward certain regions of a Tolerance-Map, and into a geometric bias that can be computed from the geometry of multidimensional T-Maps. Although the probabilistic representation in this paper is built from geometric bias, and it is presumed that manufacturing bias is uniform, the method is robust enough to include manufacturing bias in the future. Geometric bias alone shows a greater likelihood of small clearances than large clearances between an assembled tab and slot. A comparison is made between the effects of specifying the optional MMC and not specifying it with the tolerance that determines the allowable variations in position of a tab, a slot, or of both in a tab-slot assembly. Statistical tolerance assignment for the tab-slot assembly is computed based on initial worst-case tolerances and for (a) constant size of tab and slot at maximum material condition, and (b) constant virtual-condition size.

1.
American National Standard ASME Y14.5M
, 1994,
Dimensioning and Tolerancing
,
The American Society of Mechanical Engineers
,
New York
.
2.
International Organization for Standardization ISO 1101
, 1983, “
Geometric Tolerancing—Tolerancing of Form, Orientation, Location, and Run-Out—Generalities, Definitions, Symbols, and Indications on Drawings
.”
3.
Davidson
,
J. K.
,
Mujezinović
,
A.
, and
Shah
,
J. J.
, 2002, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
609
622
.
4.
Mujezinović
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2004, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
504
518
.
5.
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2002, “
Geometric Tolerances: A New Application for Line Geometry and Screws
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
C1
), pp.
95
104
.
6.
Giordano
,
M.
,
Kataya
,
B.
, and
Pairel
,
E.
, 2001, “
Tolerance Analysis and Synthesis by Means of Clearance and Deviation Spaces
,”
Geometric Product Specification and Verification
,
Proceedings of the Seventh CIRP International Seminar on Computer-Aided Tolerancing
, École Normale Supérieure de Cachen, Cachan, France, Apr. 24–25,
P.
Bourdet
and
L.
Mathieu
, eds.,
Kluwer
,
Dordrecht
, pp.
145
154
.
7.
Giordano
,
M.
,
Pairel
,
E.
, and
Samper
,
S.
, 1999, “
Mathematical Representation of Tolerance Zones
,”
Global Consistency of Tolerances
,
Proceedings of the Sixth CIRP International Seminar on Computer-Aided Tolerancing
, University of Twente, Enschede, The Netherlands, Mar. 22–24,
F.
vanHouten
and
H.
Kals
, eds.,
Kluwer
,
Dordrecht
, pp.
177
186
.
8.
Roy
,
U.
, and
Li
,
B.
, 1998, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects–I: Form Tolerance
,”
Comput.-Aided Des.
0010-4485,
30
, pp.
151
161
.
9.
Roy
,
U.
, and
Li
,
B.
, 1999, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects–II: Size, Orientation and Position Tolerances
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
273
285
.
10.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
, 1994, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
0934-9839,
6
, pp.
191
210
.
11.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2004, “
The Effects of Different Specifications on the Tolerance-Maps for an Angled Face
,” ASME Paper No. DETC-2004/DAC-57199.
12.
Evans
,
D. H.
, 1974, “
Statistical Tolerancing: The State of the Art, Part I. Background
,”
J. Quality Technol.
0022-4065,
6
, pp.
188
195
.
13.
Evans
,
D. H.
, 1975, “
Statistical Tolerancing: The State of the Art, Part II. Method for Estimating Moments
,”
J. Quality Technol.
0022-4065,
7
, pp.
1
12
.
14.
Evans
,
D. H.
, 1975, “
Statistical Tolerancing: The State of the Art, Part III. Shifts and Drifts
,”
J. Quality Technol.
0022-4065,
7
(
2
), pp.
72
76
.
15.
Krulikowski
,
A.
, 2002,
Tolerance Stacks—A Self-Study Course
,
Effective Training Inc.
,
Westland, MI
, p.
48186
.
16.
Srinivasan
,
V.
, and
O’Connor
,
M. A.
, 1996, “
Towards an ISO Standard for Statistical Tolerancing
,”
Proceedings of the Fourth CIRP Design Seminar on Computer-Aided Tolerancing
,
F.
Kimura
, ed.,
Chapman and Hall
,
London
, pp.
159
172
.
17.
Teissandier
,
D.
,
Couétard
,
Y.
, and
Gérard
,
A.
, 1999, “
A Computer Aided Tolerancing Model: Proportioned Assembly Clearance Volume
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
805
817
.
18.
Zou
,
Z.
, and
Morse
,
E.
, 2001, “
Statistical Tolerance Analysis Using GapSpace
,”
Geometric Product Specification and Verification
,
Proceedings of the Seventh CIRP International Seminar on Computer-Aided Tolerancing
, École Normale Supérieure de Cachen, Cachan, France, Apr. 24–25,
P.
Bourdet
and
L.
Mathieu
, eds.,
Kluwer
,
Dordrecht
, pp.
105
114
.
19.
Lee
,
S.
, and
Yi
,
C.
, 1998, “
Statistical Representation and Computation of Tolerance and Clearance for Assemblability Evaluation
,”
Robotica
0263-5747,
16
, pp.
251
264
.
20.
Wu
,
W.
, and
Rao
,
S. S.
, 2004, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
581
592
.
21.
Giordano
,
M.
,
Petit
,
J.
, and
Samper
,
S.
, 2003, “
Minimum Clearance for Tolerance Analysis of a Vacuum Pump
,”
Eighth CIRP Seminar on Computer Aided Tolerancing
, Charlotte, NC, CD-ROM.
22.
Coxeter
,
H. S. M.
, 1969,
Introduction to Geometry
,
2nd ed.
,
Wiley
,
New York
.
23.
Suresh
,
K.
, and
Voelcker
,
H. B.
, 1994, “
New Challenges in Dimensional Metrology: A Case Study Based on ‘Size’
,”
Manuf. Rev.
0896-1611,
7
(
5
), pp.
291
303
.
24.
Banchoff
,
T. F.
, 1990,
Beyond the Third Dimension: Geometry, Computer Graphics and Higher Dimensions
,
W. H. Freeman
,
New York
.
25.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2005, “
Allocating Tolerances Statistically With Tolerance-Maps and Beta Distributions: The Target a Planar Face
,” ASME Paper No. IDETC2005/DAC-85122.
26.
Ross
,
S. M.
, 2006,
A First Course in Probability
,
7th ed.
,
Pearson Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Frigo
,
M.
, and
Johnson
,
S. G.
, 2005, “
The Design and Implementation of FFTW3
,”
Proc. IEEE
0018-9219,
93
(
2
), pp.
216
231
.
29.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2007, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance for Pin-Hole Assemblies
,”
ASME Trans., JCISE
,
7
(
4
), pp.
347
359
.
30.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2007, “
Influence of Form on Frequency Distribution for 1D Clearance Which is Generated From Tolerance-Maps
,”
Proceedings of the Tenth CIRP International Seminar on Computer-Aided Tolerancing
, Erlangen, Germany, Mar. 21–23. CD-ROM.
31.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2010, “
Influence of Form on Tolerance-Map-Generated Frequency Distributions for 1D Clearance in Design
,”
Precis. Eng.
0141-6359,
34
(
1
), pp.
22
27
.
32.
Sommerville
,
D. M. Y.
, 1929,
An Introduction to the Geometry of n Dimensions
,
Methuen
,
London
.
You do not currently have access to this content.