To minimize the coordination efforts among design teams and expedite the design process via parallel workflows, a cooperative and decentralized environment is often considered for team-based design. The cooperative environment implies that teams are motivated to achieve the common objective of the design, while the decentralized environment encourages teams to work independently. Due to the nature of the decentralized environment, achieving an optimal solution is not trivial, even though all teams are motivated and willing to do so. In this context, this paper introduces the Lagrangian relaxation approach for solving decentralized design problems. Also, an objective adjustment factor is proposed to improve the convergence of the solution process. Two examples, welded beam design and heat exchanger design, have been used to illustrate and validate the Lagrangian relaxation approach and the objective adjustment factor.

1.
Conejo
,
A. J.
,
Castillo
,
E.
,
Minguez
,
R.
, and
Garcia-Bertrand
,
R.
, 2006,
Decomposition Techniques in Mathematical Programming
,
Springer
,
New York
.
2.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
, 2006,
Nonlinear Programming: Theory and Algorithms
,
3rd ed.
,
Wiley
,
New Jersey
.
3.
Chanron
,
V.
, and
Lewis
,
K.
, 2005, “
A Study of Convergence in Decentralized Design Processes
,”
Res. Eng. Des.
0934-9839,
16
(
3
), pp.
133
145
.
4.
Cramer
,
E.
,
Dennis
,
J.
,
Frank
,
P.
,
Lewis
,
R.
, and
Shubin
,
G.
, 1994, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
1052-6234,
4
(
4
), pp.
754
776
.
5.
Balling
,
R. J.
, and
Sobieszczanski-Sobieski
,
J.
, 1996, “
Optimization of Coupling Systems: A Critical Overview of Approaches
,”
AIAA J.
0001-1452,
34
(
1
), pp.
6
17
.
6.
Braun
,
R.
, 1996, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Ph.D. thesis, Standard University, Stanford, CA.
7.
Tappeta
,
R.
, and
Renaud
,
J.
, 1997, “
Multiobjective Collaborative Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
(
3
), pp.
403
411
.
8.
Gu
,
X.
,
Renaud
,
J. E.
,
Ashe
,
L. M.
,
Batill
,
S. M.
,
Budhiraja
,
A. S.
, and
Krajewski
,
L. J.
, 2002, “
Decision-Based Collaborative Optimization
,”
ASME J. Mech. Des.
0161-8458,
124
(
1
), pp.
1
13
.
9.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
, 2002, “
Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design
,”
AIAA J.
0001-1452,
40
(
2
), pp.
301
309
.
10.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
11.
Khajavirad
,
A.
, and
Michalek
,
J. J.
, 2008, “
A Decomposed Gradient-Based Approach for Generalized Platform Selection and Variant Design in Product Family Optimization
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
071101
.
12.
Lassiter
,
J. B.
,
Wiecek
,
M. M.
, and
Andrighetti
,
K. R.
, 2005, “
Lagrangian Coordination and Analytical Target Cascading: Solving ATC-Decomposed Problems With Lagrangian Duality
,”
Optim. Eng.
1389-4420,
6
(
3
), pp.
361
381
.
13.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J. J.
, 2008, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
130
(
5
), p.
051402
.
14.
Vincent
,
T. L.
, 1983, “
Game Theory as a Design Tool
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
165
170
.
15.
Rao
,
S. S.
, and
Freiheit
,
T. I.
, 1991, “
A Modified Game Theory Approach for Multiobjective Optimization
,”
ASME J. Mech. Des.
0161-8458,
113
(
3
), pp.
286
291
.
16.
Dhingra
,
A. K.
, and
Rao
,
S. S.
, 1995, “
A Cooperative Fuzzy Game Theoretic Approach to Multiple Objective Design Optimization
,”
Eur. J. Oper. Res.
0377-2217,
83
(
3
), pp.
547
567
.
17.
Badhrinath
,
K.
, and
Rao
,
J. R. J.
, 1996, “
Modeling for Concurrent Design Using Game Theory Formulations
,”
Concurr. Eng. Res. Appl.
1063-293X,
4
(
4
), pp.
389
399
.
18.
Lewis
,
K.
, and
Mistree
,
F.
, 1997, “
Modeling Interactions in Multidisciplinary Design: A Game Theoretic Approach
,”
AIAA J.
0001-1452,
35
(
8
), pp.
1387
1392
.
19.
Chen
,
L.
, and
Li
,
S.
, 2003, “
Characterization of Sequential Optimization Strategies in Concurrent Product and Process Design: A Dual-Team Approach
,”
Optim. Eng.
1389-4420,
35
(
5
), pp.
471
488
.
20.
Li
,
S.
,
Chen
,
L.
, and
Xi
,
J.
, 2006, “
Modeling for Cooperative Multi-Team Based Design Optimization
,”
Int. J. Comput. Integr. Manuf.
0951-192X,
19
(
5
), pp.
411
422
.
21.
Xiao
,
A.
,
Zeng
,
S.
,
Allen
,
J. K.
,
Rosen
,
D. W.
, and
Mistree
,
F.
, 2005, “
Collaborative Multidisciplinary Decision Making Using Game Theory and Design Capability Indices
,”
Res. Eng. Des.
0934-9839,
16
(
1–2
), pp.
57
72
.
22.
Lasdon
,
L. S.
, 1970,
Optimization Theory for Large Systems
,
Macmillan
,
New York
.
23.
Dantzig
,
G. B.
, and
Wolfe
,
P.
, 1960, “
Decomposition Principle for Linear Programs
,”
Oper. Res.
0030-364X,
8
(
1
), pp.
101
111
.
24.
Benders
,
J. F.
, 1962, “
Partitioning Procedures for Solving Mixed-Variables Programming Problems
,”
Numer. Math.
0029-599X,
4
, pp.
238
252
.
25.
Rosen
,
J. B.
, 1964, “
Primal Partition Programming for Block Diagonal Matrices
,”
Numer. Math.
0029-599X,
6
(
1
), pp.
250
260
.
26.
Held
,
M.
, and
Karp
,
R. M.
, 1970, “
The Traveling Salesman Problem and Minimum Spanning Trees
,”
Oper. Res.
0030-364X,
18
(
6
), pp.
1138
1162
.
27.
Shapiro
,
J. F.
, 1971, “
Generalized Lagrange Multipliers in Integer Programming
,”
Oper. Res.
0030-364X,
19
(
1
), pp.
68
76
.
28.
Geoffrion
,
A. M.
, 1974, “
Lagrangean Relaxation for Integer Programming
,”
Math. Program.
0025-5610,
2
, pp.
82
114
.
29.
Fisher
,
M. L.
, 1981, “
The Lagrangian Relaxation Method for Solving Integer Programming Problems
,”
Manage. Sci.
0025-1909,
27
(
1
), pp.
1
18
.
30.
Held
,
M.
,
Wolfe
,
P.
, and
Crowder
,
H.
, 1974, “
Validation of Subgradient Optimization
,”
Math. Program.
0025-5610,
6
, pp.
62
88
.
31.
Kelley
,
J. E.
, 1960, “
The Cutting-Plane Method for Solving Convex Programs
,”
J. Soc. Ind. Appl. Math.
0368-4245,
8
(
4
), pp.
703
712
.
32.
Kiwiel
,
K. C.
, 1995, “
Proximal Level Bundle Methods for Convex Nondifferentiable Optimization, Saddle-Point Problems and Variational Inequality
,”
Math. Program.
0025-5610,
69
, pp.
89
109
.
33.
Ragsdell
,
K. M.
, and
Phillips
,
D. T.
, 1976, “
Optimal Design of a Class of Welded Structures Using Geometric Programming
,”
ASME J. Eng. Ind.
0022-0817,
98
(
3
), pp.
1021
1025
.
34.
2000,
Sensitivity Analysis
,
A.
Saltelli
,
K.
Chan
, and
E. M.
Scott
, eds.,
Wiley
,
Chichester, UK
.
35.
Kakaç
,
S.
, and
Liu
,
H.
, 1998,
Heat Exchangers: Selection, Rating and Thermal Design
,
CRC
,
Boca Raton, FL
.
You do not currently have access to this content.