Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-3 of 3
Keywords: machine learning
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: ASME
Article Type: Research-Article
J. Comput. Nonlinear Dynam. July 2024, 19(7): 071012.
Paper No: CND-23-1310
Published Online: June 21, 2024
...Tomas Slimak; Andreas Zwölfer; Bojidar Todorov; Daniel J. Rixen Artificial neural networks (NNs) are a type of machine learning (ML) algorithm that mimics the functioning of the human brain to learn and generalize patterns from large amounts of data without the need for explicit knowledge...
Journal Articles
Publisher: ASME
Article Type: Research-Article
J. Comput. Nonlinear Dynam. July 2024, 19(7): 071011.
Paper No: CND-23-1268
Published Online: June 18, 2024
... this problem, in this paper, a physics-guided machine learning (ML) method for prediction of peak impact forces, within predefined modification dimensions of collaborative applications, is proposed. Along with a pose-dependent linearized model, an ensemble of boosted decision tree (BDT) in combination...
Journal Articles
Publisher: ASME
Article Type: Research-Article
J. Comput. Nonlinear Dynam. March 2023, 18(3): 031004.
Paper No: CND-22-1054
Published Online: January 19, 2023
... problem, and a stability analysis is performed to study the governing bifurcations. In addition, we build a machine learning framework where neural net (NN) simulators are trained to predict the performance measures of the gated waveguide in terms of certain transmissibility and nonreciprocity measures...