Skip Nav Destination
Issues
May 2022
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Special Issue: Selected Papers From 2021 IDETC-CIE MSND Conference
Guest Editorial
Special Issue: Selected Papers From 2021 IDETC-CIE MSND Conference
J. Comput. Nonlinear Dynam. May 2022, 17(5): 050301.
doi: https://doi.org/10.1115/1.4054104
Research Papers
Enabling Artificial Intelligence Studies in Off-Road Mobility Through Physics-Based Simulation of Multiagent Scenarios
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051001.
doi: https://doi.org/10.1115/1.4053321
Topics:
Simulation
,
Vehicles
,
Sensors
,
Mechanical admittance
,
Roads
An Alternative Formulation for Modeling Self-Excited Vibrations of Drillstring With Polycrystalline Diamond Compact Bits
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051002.
doi: https://doi.org/10.1115/1.4053407
Topics:
Delays
,
Drill strings
,
Equations of motion
,
Galerkin method
,
Modeling
,
Polycrystalline diamond compact bits
,
Rocks
,
Stability
,
Torque
,
Trajectories (Physics)
Singularity-Free Lie Group Integration and Geometrically Consistent Evaluation of Multibody System Models Described in Terms of Standard Absolute Coordinates
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051003.
doi: https://doi.org/10.1115/1.4053368
Topics:
Multibody systems
,
Parametrization
,
Rotation
,
Screws
,
Kinematics
,
Equations of motion
,
Algebra
Model-Based Design and Optimization of Passive Shoulder Exoskeletons
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051004.
doi: https://doi.org/10.1115/1.4053405
Topics:
Design
,
Exoskeleton devices
,
Optimization
,
Torque
,
Kinematics
A Study of a Pendulum-Like Vibration Isolator With Quasi-Zero-Stiffness
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051005.
doi: https://doi.org/10.1115/1.4053406
Topics:
Displacement
,
Equilibrium (Physics)
,
Pendulums
,
Springs
,
Stiffness
,
Vibration isolators
,
Computer simulation
,
Excitation
A Hybrid Arbitrary Lagrangian Eulerian Formulation for the Investigation of the Stability of Pipes Conveying Fluid and Axially Moving Beams
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051006.
doi: https://doi.org/10.1115/1.4053505
Topics:
Equations of motion
,
Fluids
,
Pipes
,
Stability
,
Flow (Dynamics)
,
Eigenvalues
Boosting the Model Discovery of Hybrid Dynamical Systems in an Informed Sparse Regression Approach
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051007.
doi: https://doi.org/10.1115/1.4053324
Topics:
Algorithms
,
Dynamic systems
,
Dynamics (Mechanics)
,
Electromagnetic radiation
,
Springs
,
Phase space
,
Manifolds
,
Switches
Modeling and Parameter Identification for a Flexible Rotor With Impacts
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051008.
doi: https://doi.org/10.1115/1.4053560
Reduced Order Modeling of Deformable Tire-Soil Interaction With Proper Orthogonal Decomposition
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051009.
doi: https://doi.org/10.1115/1.4053592
Topics:
Simulation
,
Soil
,
Tires
,
Principal component analysis
,
Mechanical admittance
,
Modeling
A Reduced and Linearized High Fidelity Waveboard Multibody Model for Stability Analysis
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051010.
doi: https://doi.org/10.1115/1.4053507
Topics:
Eigenvalues
,
Equations of motion
,
Jacobian matrices
,
Stability
,
Wheels
,
Multibody systems
Numerical and Experimental Investigations on Cross-Sensitivity Characteristics of Instrumented Wheelset Associated With Longitudinal Force and Lateral Contact Position
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051011.
doi: https://doi.org/10.1115/1.4053506
Topics:
Approximation
,
Electric bridges
,
Finite element methods
,
Stress
,
Wheels
,
Wheelsets
,
Strain gages
A Polynomial-Chaos-Based Multifidelity Approach to the Efficient Uncertainty Quantification of Online Simulations of Automotive Propulsion Systems
J. Comput. Nonlinear Dynam. May 2022, 17(5): 051012.
doi: https://doi.org/10.1115/1.4053559
Topics:
Chaos
,
Polynomials
,
Propulsion systems
,
Simulation
,
Torque
,
Uncertainty quantification
,
Engineering simulation
,
Uncertainty
,
Vehicles
Email alerts
RSS Feeds
A New Perspective for Scientific Modelling: Sparse Reconstruction-Based Approach for Learning Time-Space Fractional Differential Equations
J. Comput. Nonlinear Dynam (December 2024)
An Efficient Numerical Approach to Solve Fractional Coupled Boussinesq Equations
J. Comput. Nonlinear Dynam (December 2024)