Skip Nav Destination
Issues
February 2019
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Guest Editorial
Special Issue: Sensitivity Analysis and Uncertainty Quantification
J. Comput. Nonlinear Dynam. February 2019, 14(2): 020301.
doi: https://doi.org/10.1115/1.4042262
Topics:
Optimization
,
Sensitivity analysis
,
Uncertainty
,
Uncertainty quantification
,
Chaos
,
Polynomials
,
Simulation
,
Design
,
Modeling
Research Papers
Discrete Adjoint Method for the Sensitivity Analysis of Flexible Multibody Systems
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021001.
doi: https://doi.org/10.1115/1.4041237
Topics:
Design
,
Kinematics
,
Multibody systems
,
Sensitivity analysis
,
Tensors
,
Optimization
,
Stiffness
Sensitivity of Lyapunov Exponents in Design Optimization of Nonlinear Dampers
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021002.
doi: https://doi.org/10.1115/1.4041827
Nonintrusive Global Sensitivity Analysis for Linear Systems With Process Noise
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021003.
doi: https://doi.org/10.1115/1.4041622
Topics:
Chaos
,
Linear systems
,
Noise (Sound)
,
Polynomials
,
Uncertainty
,
Sensitivity analysis
,
Stochastic systems
Direct Sensitivity Analysis of Multibody Systems: A Vehicle Dynamics Benchmark
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021004.
doi: https://doi.org/10.1115/1.4041960
Topics:
Design
,
Errors
,
Multibody systems
,
Sensitivity analysis
,
Simulation
,
Tires
,
Optimization
,
Equilibrium (Physics)
,
Vehicle dynamics
,
Wheels
Reliable and Failure-Free Workspaces for Motion Planning Algorithms for Parallel Manipulators Under Geometrical Uncertainties
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021005.
doi: https://doi.org/10.1115/1.4042015
Topics:
Failure
,
Manipulators
,
Probability
,
Path planning
,
Algorithms
,
Uncertainty
Topology Optimization Under Stress Relaxation Effect Using Internal Element Connectivity Parameterization
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021006.
doi: https://doi.org/10.1115/1.4041578
Topics:
Creep
,
Optimization
,
Relaxation (Physics)
,
Stress
,
Topology
,
Design
,
Displacement
Topology Optimization of Dynamic Systems Under Uncertain Loads: An H∞-Norm-Based Approach
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021007.
doi: https://doi.org/10.1115/1.4042140
Topics:
Optimization
,
Stress
,
Topology
,
Transfer functions
Multiple Dynamic Response Patterns of Flexible Multibody Systems With Random Uncertain Parameters
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021008.
doi: https://doi.org/10.1115/1.4041580
Topics:
Computation
,
Dynamic response
,
Dynamics (Mechanics)
,
Multibody systems
,
Polynomials
,
Algorithms
,
Robots
,
Chaos
,
Displacement
Discrepancy Prediction in Dynamical System Models Under Untested Input Histories
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021009.
doi: https://doi.org/10.1115/1.4041238
Topics:
Artificial neural networks
,
Dynamic systems
,
Model validation
,
Physics
,
Reliability
,
Uncertainty
,
Cycles
,
Machinery
,
Simulation models
,
Errors
Generalized Polynomial Chaos With Optimized Quadrature Applied to a Turbulent Boundary Layer Forced Plate
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021010.
doi: https://doi.org/10.1115/1.4041772
Topics:
Boundary layer turbulence
,
Chaos
,
Polynomials
,
Tensors
,
Uncertainty
,
Dimensions
,
Modeling
,
Noise (Sound)
,
Statistics
Uncertainty Quantification Using Generalized Polynomial Chaos Expansion for Nonlinear Dynamical Systems With Mixed State and Parameter Uncertainties
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021011.
doi: https://doi.org/10.1115/1.4041473
Topics:
Chaos
,
Polynomials
,
Uncertainty
,
Statistical distributions
,
Nonlinear dynamical systems
Framework of Reliability-Based Stochastic Mobility Map for Next Generation NATO Reference Mobility Model
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021012.
doi: https://doi.org/10.1115/1.4041350
Topics:
Mechanical admittance
,
Reliability
,
Soil
,
Uncertainty
,
Vehicles
Radial Basis Functions Update of Digital Models on Actual Manufactured Shapes
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021013.
doi: https://doi.org/10.1115/1.4041680
Topics:
Computer-aided design
,
Computer-aided engineering
,
Design
,
Geometry
,
Shapes
,
Wings
,
Workflow
,
Interpolation
,
Metrology
Uncertainty Considerations for Nonlinear Dynamics of a Class of MEMS Switches Undergoing Tip Contact Bouncing
J. Comput. Nonlinear Dynam. February 2019, 14(2): 021014.
doi: https://doi.org/10.1115/1.4041773
Topics:
Microelectromechanical systems
,
Switches
,
Uncertainty
,
Dynamics (Mechanics)
,
Damping
,
Density
,
Young's modulus
,
Statistics
Email alerts
RSS Feeds
Design and Analysis of an Automotive Crash Box Using Strut-Based Lattice Structures
J. Comput. Nonlinear Dynam (December 2024)
Nonlinear Dynamics of a Magnetic Shape Memory Alloy Oscillator
J. Comput. Nonlinear Dynam (December 2024)
Influences of Tooth Crack on Dynamic Characteristics of a Multi-Stage Gear Transmission System Considering the Flash Temperature
J. Comput. Nonlinear Dynam (December 2024)
Data-Driven Modeling of Tire–Soil Interaction With Proper Orthogonal Decomposition-Based Model Order Reduction
J. Comput. Nonlinear Dynam (December 2024)