Abstract

In this paper, a bifurcation tree of period-1 to period-8 motions in a nonlinear Jeffcott rotor system is obtained through the discrete mapping method. The bifurcations and stability of periodic motions on the bifurcation tree are discussed. The quasi-periodic motions on the bifurcation tree are caused by two (2) Neimark bifurcations of period-1 motions, one (1) Neimark bifurcation of period-2 motions and four (4) Neimark bifurcations of period-4 motions. The specific quasi-periodic motions are mainly based on the skeleton of the corresponding periodic motions. One stable and one unstable period-doubling bifurcations exist for the period-1, period-2 and period-4 motions. The unstable period-doubling bifurcation is from an unstable period-m motion to an unstable period-2m motion, and the unstable period-m motion becomes stable. Such an unstable period-doubling bifurcation is the 3rd source pitchfork bifurcation. Periodic motions on the bifurcation tree are simulated numerically, and the corresponding harmonic amplitudes and phases are presented for harmonic effects on periodic motions in the nonlinear Jeffcott rotor system. Such a study gives a complete picture of periodic and quasi-periodic motions in the nonlinear Jeffcott rotor system in the specific parameter range. One can follow the similar procedure to work out the other bifurcation trees in the nonlinear Jeffcott rotor systems.

Article PDF first page preview

Article PDF first page preview
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.