The symbolic modeling of flexible multibody systems is a challenging task. This is especially the case for complex-shaped elastic bodies, which are described by a numerical model, e.g., an FEM model. The kinematic and dynamic properties of the flexible body are in this case numerical and the elastic deformations are described with a certain number of local shape functions, which results in a large amount of data that have to be handled. Both attributes do not suggest the usage of symbolic tools to model a flexible multibody system. Nevertheless, there are several symbolic multibody codes that can treat flexible multibody systems in a very efficient way. In this paper, we present some of the modifications of the symbolic research code Neweul-M2 which are needed to support flexible bodies. On the basis of these modifications, the mentioned restrictions due to the numerical flexible bodies can be eliminated. Furthermore, it is possible to re-establish the symbolic character of the created equations of motion even in the presence of these solely numerical flexible bodies.

References

References
1.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
,
Dordrecht, Netherlands
.
2.
Schwertassek
,
R.
, and
Wallrapp
,
O.
,
1999
,
Dynamik Flexibler Mehrkörpersysteme (in German)
,
Vieweg
,
Braunschweig
.
3.
Ambrósio
,
J. A. C.
, and
Kleiber
,
M.
,
2001
, “
Computational Aspects of Nonlinear Structural Systems With Large Rigid Body Motion
,” Vol.
179
,
NATO Science Series III: Computer and Systems Sciences
,
IOS Press, Inc
.
4.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
Appl. Mech. Rev.
,
56
(
6
), pp.
553
614
.10.1115/1.1590354
5.
Samin
,
J.-C.
and
Fisette
,
P.
,
2003
,
Symbolic Modeling of Multibody Systems
,
Kluwer Academic Publisher
,
Dordrecht, Netherlands
.
6.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
New York
.
7.
Shi
,
P.
, and
McPhee
,
J.
,
2000
, “
Dynamics of Flexible Multibody Systems Using Virtual Work and Linear Graph Theory
,”
Multibody System Dynamics
,
4
(
4
), pp.
355
381
.10.1023/A:1009841017268
8.
Kurz
,
T.
,
Eberhard
,
P.
,
Henninger
,
C.
, and
Schiehlen
,
W.
,
2010
, “
From Neweul to Neweul-M2: Symbolical Equations of Motion for Multibody System Analysis and Synthesis
,”
Multibody System Dynamics
,
24
(
1
), pp.
25
41
.10.1007/s11044-010-9187-x
9.
Fisette
,
P.
, and
Samin
,
J.-C.
,
1993
, “
Robotran: Symbolic Generation of Multi-Body System Dynamic Equations
,”
Advanced Multibody System Dynamics
, Vol.
20
,
W.
Schiehlen
, ed.,
Springer
,
Netherlands
, pp.
373
378
.
10.
Piedbœuf
,
J.-C.
,
Kövecses
,
J.
,
Moore
,
B.
, and
L'Archevêque
,
R.
,
2003
, “
Symofros: A Virtual Environment for Modeling, Simulation and Real-Time Implementation of Multibody Dynamics and Control
,”
Virtual Nonlinear Multibody Systems
, Vol.
103
,
W.
Schiehlen
and
M.
Valášek
, eds.,
Springer
,
Netherlands
, pp.
317
324
.
11.
Kurz
,
T.
, and
Eberhard
,
P.
,
2009
, “
Symbolic Modeling and Analysis of Elastic Multibody Systems
,”
Proceedings of the International Symposium on Coupled Methods in Numerical Dynamics
, Brussels, Belgium, pp.
187
201
.
12.
Wallrapp
,
O.
,
1994
, “
Standardization of Flexible Body Modeling in Multibody System Codes, Part I: Definition of Standard Input Data
,”
Mechanics of Structures and Machines
,
22
(
3
), pp.
283
304
.10.1080/08905459408905214
13.
Shabana
,
A. A.
,
1996
, “
Resonance Conditions and Deformable Body Co-Ordinate Systems
,”
J. Sound Vib.
,
192
, pp.
389
398
.10.1006/jsvi.1996.0193
14.
Schwertassek
,
R.
,
Wallrapp
,
O.
, and
Shabana
,
A.
,
1999
, “
Flexible Multibody Simulation and Choice of Shape Functions
,”
Nonlinear Dynamics
,
20
(
4
), pp.
361
380
.10.1023/A:1008314826838
15.
Saha
,
S. K.
, and
Schiehlen
,
W. O.
,
2001
, “
Recursive Kinematics and Dynamics for Parallel Structural Closed-Loop Multibody Systems
,”
Mechanics of Structures and Machines
,
29
(
2
), pp.
143
175
.10.1081/SME-100104478
16.
Kurz
,
T.
,
Burkhardt
,
M.
, and
Eberhard
,
P.
,
2011
, “
Systems with Constraint Equations in the Symbolic Multibody Simulation Software Neweul-M2
,”
Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics
, 2011, Samin, J.-C. and P. Fisette, eds.
17.
Nowakowski
,
C.
,
Fehr
,
J.
, and
Eberhard
,
P.
,
2011
, “
Model Reduction for a Crankshaft Used in Coupled Simulations of Engines
,”
Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2011
, J.-C. Samin and P. Fisette, eds.
You do not currently have access to this content.