This study proposes a systematic extension of a multiflexible-body dynamics (MFBD) formulation that is based on a recursive formulation for rigid body dynamics. It is extended to include nonlinear plastic and hyperelastic material models for the flexible bodies. The flexible bodies in the existing MFBD formulation use a finite element formulation based on corotational elements. The rigid bodies and flexible bodies are coupled using the method of Lagrange multipliers. The extensions to add plasticity and hyperelasticity are outlined. A solid, brick-type element and a shell element are adapted from the literature for use with the plastic material, and a constant volume constraint is introduced to enforce the approximation of incompressibility with the hyperelastic materials. A brief overview of the MFBD formulation and the details required to extend the formulation to incorporate these nonlinear material models are presented. Numerical examples are presented to demonstrate the feasibility of the model.

References

References
1.
Jung
,
S. P.
,
Park
,
T. W.
, and
Chung
,
W. S.
,
2011
, “
Dynamic Analysis of Rubber-Like Material Using Absolute Nodal Coordinate Formulation Based on the Non-Linear Constitutive Law
,”
Nonlinear Dyn.
,
63
(
1–2
), pp.
149
157
.10.1007/s11071-010-9792-5
2.
Maqueda
,
L. G.
,
Mohamed
,
A. N. A.
, and
Shabana
,
A. A.
,
2010
, “
Use of General Nonlinear Material Models in Beam Problems: Application to Belts and Rubber Chains
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021003
.10.1115/1.4000795
3.
Betsch
,
P.
, and
Sänger
,
N.
,
2009
, “
On the Use of Geometrically Exact Shells in a Conserving Framework for Flexible Multibody Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
17
), pp.
1609
1630
.10.1016/j.cma.2009.01.016
4.
Shabana
,
A. A.
,
2008
,
Computational Continuum Mechanics
,
Cambridge University Press
,
Cambridge
, UK.
5.
Gerstmayr
,
J.
, and
Matikainen
,
M. K.
,
2006
, “
Analysis of Stress and Strain in the Absolute Nodal Coordinate Formulation With Nonlinear Material Behavior
,”
III European Conference on Computational Mechanics
, Springer, The Netherlands, pp.
615
615
.
6.
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2004
, “
Application of Plasticity Theory and Absolute Nodal Coordinate Formulation to Flexible Multibody System Dynamics
,”
J. Mech. Des.
,
126
, pp.
478
487
.10.1115/1.1737491
7.
Ibrahimbegovic
,
A.
,
Mamouri
,
S
,
Taylor
,
R. L.
, and
Chen
,
A. J.
,
2000
, “
Finite Element Method in Dynamics of Flexible Multibody Systems: Modeling of Holonomic Constraints and Energy Conserving Integration Schemes
,”
Multibody Syst. Dyn.
,
4
(
2–3
), pp.
195
223
.10.1023/A:1009867627506
8.
Goicolea
,
J. M.
, and
Orden
,
G.
,
2000
, “
Dynamic Analysis of Rigid and Deformable Multibody Systems With Penalty Methods and Energy-Momentum Schemes
,”
J. Comput. Methods Appl. Mech. Eng.
,
188
(
4
), pp.
789
804
.10.1016/S0045-7825(99)00362-X
9.
Choi
,
J.
,
Ryu
,
H. S.
, and
Choi
,
J. H.
,
2009
, “
Multi Flexible Body Dynamics Using Incremental Finite Element Formulation
,”
Multibody Dynamics 2009, ECCOMAS Thematic Conference
.
10.
Bae
,
D. S.
,
Han
,
J. M.
, and
Yoo
,
H. H.
,
1999
, “
A Generalized Recursive Formulation for Constrained Mechanical System Dynamics
,”
Mech. Struct. Mach.
,
27
(
3
), pp.
293
315
.10.1080/08905459908915700
11.
Bae
,
D. S.
,
Han
,
J. M.
, and
Choi
,
J. H.
,
2000
, “
An Implementation Method for Constrained Flexible Multibody Dynamics Using a Virtual Body and Joint
,”
Multibody Syst. Dyn.
,
4
, pp.
297
315
.10.1023/A:1009832426396
12.
Bae
,
D. S.
,
Han
,
J. M.
,
Choi
,
J. H.
, and
Yang
S. M.
,
2001
, “
A Generalized Recursive Formulation for Constrained Flexible Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
1841
1859
.10.1002/nme.97
13.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer-Verlag
,
New York
.
14.
Simo
,
J. C.
, and
Rifai
,
M. S.
,
1990
, “
A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
,
29
(
8
), pp.
1595
1638
.10.1002/nme.1620290802
15.
Dvorkin
,
E. N.
, and
Bathe
,
K. J.
,
1984
, “
A Continuum Mechanics Based Four-Node Shell Element for General Non-Linear Analysis
,”
Eng. Comput.
,
1
(
1
), pp.
77
88
.10.1108/eb023562
16.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Ellis Horwood
,
Chichester
.
17.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge
, UK.
18.
Gent
,
A. N.
,
2001
,
Engineering With Rubber
,
Carl Hanser Verlag
,
Munich
.
19.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.10.1016/0022-5096(93)90013-6
20.
García de Jalón
,
D. J.
,
Unda
J.
, and
Avello
A.
,
1986
, “
Natural Coordinates for the Computer Analysis of Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
,
56
, pp.
309
327
.10.1016/0045-7825(86)90044-7
21.
Wittenburg
J.
,
1977
,
Dynamics of Systems of Rigid Bodies
,
B. G. Teubner
,
Stuttgart
.
22.
Shabana
,
A. A.
,
1996
, “
An Absolute Nodal Coordinate Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies
,” Technical Report No. MBS96-1-UIC, University of Illinois at Chicago, Chicago, IL.
23.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.10.1016/j.cma.2004.10.008
24.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
, Vol.
2
, No.
3
,
Prentice-Hall
,
Englewood Cliffs
, NJ.
25.
Belytschko
,
T.
,
Moran
,
B.
, and
Liu
,
W. K.
,
2000
,
Nonlinear Finite Element Analysis for Continua and Structures
,
Wiley
, West Sussex, England.
26.
Geradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
John Wiley
, West Sussex, England.
27.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2011
,
The Finite Element Method (3 Volume-Set)
,
Butterworth-Heinemann
, Oxford, England.
28.
Belytschko
,
T.
, and
Hsieh
,
B. J.
,
1973
, “
Non-Linear Transient Finite Element Analysis With Convected Co-Ordinates
,”
Int. J. Numer. Methods Eng.
,
7
, pp.
255
271
.10.1002/nme.1620070304
29.
Crisfield
,
M. A.
, and
Moita
,
G. F.
,
1996
, “
A Unified Co-Rotational Framework for Solids, Shells and Beams
,”
Int. J. Solids Struct.
,
33
, pp.
2969
2992
.10.1016/0020-7683(95)00252-9
30.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
ASME Appl. Mech. Rev.
,
56
(
6
), pp.
553
614
.10.1115/1.1590354
31.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
, Vol.
176
,
Springer Science + Business Media
, Netherlands.
32.
Malvern
,
L. E.
,
1969
,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall, Inc.
,
NJ
.
33.
Washizu
,
K.
,
1982
,
Variational Methods in Elasticity and Plasticity
,
3rd ed.
,
Pergamon Press
,
New York
.
34.
Treloar
,
L. R. G.
,
1975
,
The Physics of Rubber Elasticity
,
Oxford University Press
Oxford, UK
.
35.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
36.
Jay
,
L. O.
, and
Negrut
,
D.
,
2007
, “
Extensions of the HHT-α Method to Differential-Algebraic Equations in Mechanics
,”
Electron. Trans. Numer. Anal.
,
26
, pp.
190
208
.
37.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(2), pp.
371
375
.10.1115/1.2900803
38.
Jay
,
L. O.
, and
Negrut
,
D.
,
2008
, “
A Second Order Extension of the Generalized-α Method for Constrained Systems in Mechanics
,”
Multibody Dynamics
,
Springer
,
The Netherlands
, pp.
143
158
.
39.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
ASCE J. Eng. Mech.
,
85
(
EM3
), pp.
67
94
.
40.
Negrut
,
D.
,
Jay
,
L. O.
, and
Khude
,
N.
,
2009
, “
A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021008
.10.1115/1.3079784
41.
Crisfield
,
M. A.
,
1993
,
Non-Linear Finite Element Analysis of Solids and Structures
,
John Wiley & Sons
, West Sussex, England.
42.
abaqus™ 6.9,
2009
,
abaqus/CAE User's Manual
, Dassault Systèmes.
43.
Choi
,
J.
,
Rhim
,
S.
, and
Choi
,
J. H.
,
2013
, “
A General Purpose Contact Algorithm Using a Compliance Contact Force Model for Rigid and Flexible Bodies of Complex Geometry
,”
Int. J. Non-Linear Mech.
,
53
, pp.
13
23
.10.1016/j.ijnonlinmec.2013.01.017
You do not currently have access to this content.