The aim of this work is to present an efficient methodology to deal with general 3D-contact problems. This approach embraces three steps: geometrical definition of 3D surfaces, detection of the candidate contact points, and evaluation of the contact forces. The 3D-contact surfaces are generated and represented by using parametric functions due to their simplicity and ease in handling freeform shapes. This task is carried during preprocessing, which is performed before starting the multibody analysis. The preprocessing procedure can be condensed into four steps: a regular and representative collection of surface points is extracted from the 3D-parametric surface; for each point the tangent vectors to the u and v directions of the parametric surface and the normal vector are computed; the geometrical information on each point is saved in a lookup table, including the parametric point coordinates, the corresponding Cartesian coordinates, and the components of the normal, tangent, and bitangent vectors; the lookup table is rearranged such that the u-v mapping is converted into a 2D matrix being this surface data saved as a direct access file. For the detection of the contact points, the relative distance between the candidate contact points is computed and used to check if the bodies are in contact. The actual contact points are selected as those that correspond to the maximum relative indentation. The contact forces are determined as functions of the indentation or pseudopenetration, impact velocity, and geometric and material properties of the contacting surfaces. In general, lookup tables are used to reduce the computation time in dynamic simulations. However, the application of these schemes involves an increase of memory needs. Within the proposed approach, the amount of memory used is significantly reduced as a result of a partial upload into memory of the lookup table. A slider-crank mechanism with a cup on the top of the slider and a marble ball are used as a demonstrative example. A contact pair is considered between a cup and a marble ball, the contact forces for which are computed using a dissipative contact model.

References

References
1.
Pfeiffer
,
F.
, and
Glocker
,
C.
,
1996
,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
New York
.
2.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modeling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.10.1016/S0094-114X(02)00045-9
3.
Pedersen
,
S. L.
,
Hansen
,
J. M.
, and
Ambrósio
,
J.
,
2004
, “
A Roller Chain Drive Model Including Contact With Guide-Bars
,”
Multibody Sys. Dyn.
,
12
(
3
), pp.
285
301
.10.1023/B:MUBO.0000049131.77305.d8
4.
Ambrósio
,
J.
,
1996
, “
Dynamics of Structures Undergoing Gross Motion and Nonlinear Deformations: A Multibody Approach
,”
Comput. Struct.
,
59
(
6
), pp.
1001
1012
.10.1016/0045-7949(95)00349-5
5.
Goldsmith
,
W.
,
1960
,
Impact: The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold
,
Sevenoaks, UK
.
6.
Brach
,
R. M.
,
1991
,
Mechanical Impact Dynamics, Rigid Body Collisions
,
Wiley
,
New York
.
7.
Johnson
,
K. L.
,
1999
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
8.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
9.
Wriggers
,
P.
,
2006
,
Computational Contact Mechanics
,
2nd ed.
,
Springer-Verlag
,
Berlin
.
10.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.10.1016/j.mechmachtheory.2012.02.010
11.
Flores
,
P.
, and
Ambrósio
,
J.
,
2010
, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Sys. Dyn.
,
24
(
1
), pp.
103
122
.10.1007/s11044-010-9209-8
12.
Machado
,
M.
,
Flores
,
P.
,
Pimenta Claro
,
J. C.
,
Ambrosio
,
J.
,
Silva
,
M.
,
Completo
,
A.
, and
Lankarani
,
H.
,
2010
, “
Development of a Planar Multibody Model of the Human Knee Joint
,”
Nonlin. Dyn.
,
60
(
3
), pp.
459
478
.10.1007/s11071-009-9608-7
13.
Ambrosio
,
J.
, and
Verissimo
,
P.
,
2009
, “
Improved Bushing Models for Vehicle Dynamics
,”
Multibody Sys. Dyn.
,
22
(
4
), pp.
341
365
.10.1007/s11044-009-9161-7
14.
Flores
,
P.
,
Ambrosio
,
J.
,
Claro
,
J. C. P.
,
Lankarani
,
H. M.
, and
Koshy
,
C. S.
,
2009
, “
Lubricated Revolute Joints in Rigid Multibody Systems
,”
Nonlin. Dyn.
,
56
, pp.
277
295
.10.1007/s11071-008-9399-2
15.
Hahn
,
C.
, and
Wriggers
,
P.
,
2003
, “
An Explicit Multi-Body Contact Algorithm
,”
Proc. Appl. Math. Mech.
,
3
, pp.
280
281
.10.1002/pamm.200310412
16.
Hippmann
,
G.
,
2004
, “
An Algorithm for Compliant Contact Between Complexly Shaped Bodies
,”
Multibody Sys. Dyn.
,
12
(
4
), pp.
345
362
.10.1007/s11044-004-2513-4
17.
Wellmann
,
C.
,
Lillie
,
C.
, and
Wriggers
,
P.
,
2008
, “
A Contact Detection Algorithm for Superellipsoids Based on the Common-Normal Concept
,”
Eng. Computat.
,
25
(
5
), pp.
432
442
.10.1108/02644400810881374
18.
Lopes
,
D. S.
,
Silva
,
M. T.
,
Ambrósio
,
J.
, and
Flores
,
P.
,
2010
, “
A Mathematical Framework for Rigid Contact Detection Between Quadric and Superquadric Surfaces
,”
Multibody Sys. Dyn.
,
24
(
3
), pp.
255
280
.10.1007/s11044-010-9220-0
19.
Delp
,
S. L.
, and
Loan
,
J. P.
,
1995
, “
A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures
,”
Comp. Biol. Med.
,
25
(
1
), pp.
21
34
.10.1016/0010-4825(95)98882-E
20.
Shuxian
,
Z.
,
Wanhua
,
Z.
, and
Bingheng
,
L.
,
2005
, “
3D Reconstruction of the Structure of a Residual Limb for Customising the Design of a Prosthetic Socket
,”
Med. Eng. Phys.
,
27
(
1
), pp.
67
74
.10.1016/j.medengphy.2004.08.015
21.
Silva
,
P.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2010
, “
Evaluation of the Contact Forces Developed in the Lower Limb/Orthosis Interface for Comfort Design
,”
Multibody Sys. Dyn.
,
24
(
3
), pp.
367
388
.10.1007/s11044-010-9219-6
22.
Dopico
,
D.
,
Luaces
,
A.
,
Gonzalez
,
M.
, and
Cuadrado
,
J.
,
2010
, “
Dealing With Multiple Contacts in a Human-in-the-Loop-Application
,”
Multibody Sys. Dyn.
,
25
(
2
), pp.
167
183
.10.1007/s11044-010-9230-y
23.
Choi
,
J.
,
Ryu
,
H. S.
,
Kim
,
C. W.
, and
Choi
,
J. H.
,
2010
, “
An Efficient and Robust Contact Algorithm for a Compliant Contact Force Model Between Bodies of Complex Geometry
,”
Multibody Sys. Dyn.
,
23
(
1
), pp.
99
120
.10.1007/s11044-009-9173-3
24.
Lin
,
M.
, and
Gottschalk
,
S.
,
1998
, “
Collision Detection Between Geometric Models: A Survey
,”
Proceedings of IMA Conference on Mathematics of Surfaces
, San Diego, CA, pp.
37
56
.
25.
Tasora
,
A.
,
Negrut
,
D.
, and
Anitescu
,
M.
,
2008
, “
Large-Scale Parallel Multi-Body Dynamics With Frictional Contact on the Graphical Processing Unit
,”
Proc. IMechE K J. Multibody Dyn.
,
222
(
4
), pp.
315
326
.10.1243/14644193JMBD154
26.
Pombo
,
J.
,
Ambrósio
,
J.
, and
Silva
,
M.
,
2007
, “
A New Wheel–Rail Contact Model for Railway Dynamics
,”
Veh. Sys. Dyn.
,
45
(
2
), pp.
165
189
.10.1080/00423110600996017
27.
Bei
,
Y.
, and
Fregly
,
B. J.
,
2004
, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,”
Med. Eng. Phys.
,
26
(
9
), pp.
777
789
.10.1016/j.medengphy.2004.07.004
28.
Pombo
,
J.
, and
Ambrósio
,
J.
,
2003
, “
General Spatial Curve Joint for Rail Guided Vehicles Kinematics and Dynamics
,”
Multibody Sys. Dyn.
,
9
(
3
), pp.
237
264
.10.1023/A:1022961825986
29.
Ericson
,
C.
,
2005
,
Real-Time Collision Detection
,
Morgan Kaufmann Publishers
,
San Francisco, CA
.
30.
Pauly
,
M.
,
Keiser
,
R.
,
Kobbelt
,
L. P.
, and
Gross
M.
,
2003
, “
Shape Modeling With Point-Sampled Geometry
,”
ACM Trans. Graphics
,
22
(
3
), pp.
641
650
.10.1145/882262.882319
31.
Farin
,
G. E.
,
Hoschek
,
J.
, and
Kim
,
M.-S.
,
2002
,
Handbook of Computer Aided Geometric Design
,
North-Holland
,
Amsterdam
.
32.
Campbell
,
R. J.
, and
Flynn
,
P. J.
,
2001
, “
A Survey of Free-Form Object Representation and Recognition Techniques
,”
Comp. Vis. Image. Understand.
,
81
(
2
), pp.
166
210
.10.1006/cviu.2000.0889
33.
Lai
,
J.-Y.
, and
Ueng
,
W.-D.
,
2001
, “
G2 Continuity for Multiple Surfaces Fitting
,”
Int. J. Adv. Manf. Tech.
,
17
(
8
), pp.
575
585
.10.1007/s001700170141
34.
Hohmeyer
,
M.
, and
Barsky
,
B. A.
,
1989
, “
Rational Continuity: Parametric, Geometric, and Frenet Frame Continuity of Rational Curves
,”
ACM Trans. Graphics
,
8
(
4
), pp.
335
359
.10.1145/77269.77274
35.
Wurm
,
E.
,
Juttler
,
B.
, and
Kim
,
M.-S.
,
2005
, “
Approximate Parametrization of Implicitly Defined Surfaces
,”
Mathematics of Surfaces XI
,
R.
Martin
,
H.
Bez
,
M.
Sabin
, eds.,
Springer
,
Berlin, Germany
, pp.
434
447
.
36.
Hartmann
,
E.
,
2000
, “
Numerical Parametrization of Curves and Surfaces
,”
CAD Design
,
17
, pp.
251
266
.
37.
Pombo
,
J.
, and
Ambrósio
,
J.
,
2008
, “
Application of a Wheel-Rail Contact Model to Railway Dynamics in Small Radius Curved Tracks
,”
Multibody Sys. Dyn.
,
19
(
1–2
), pp.
91
114
.10.1007/s11044-007-9094-y
38.
Nikravesh
,
P.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
39.
Gribbon
,
K.
, and
Bailey
,
D.
,
2004
, “
A Novel Approach to Real-Time Bilinear Interpolation
,”
2nd IEEE International Workshop on Electronic Design, Test and Applications
, Perth, Australia, pp.
126
131
.
40.
Gear
,
C. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.