This paper addresses three questions related to the use of parallel computing in multibody dynamics (MBD) simulation. The “why parallel computing?” question is answered based on the argument that in the upcoming decade parallel computing represents the main source of speed improvement in MBD simulation. The answer to “when is it relevant?” is built around the observation that MBD software users are increasingly interested in multi-physics problems that cross disciplinary boundaries and lead to large sets of equations. The “how?” question is addressed by providing an overview of the state of the art in parallel computing. Emphasis is placed on parallelization approaches and support tools specific to MBD simulation. Three MBD applications are presented where parallel computing has been used to increase problem size and/or reduce time to solution. The paper concludes with a summary of best practices relevant when mapping MBD solutions onto parallel computing hardware.

References

References
1.
MSC.Software
,
2014
, “
ADAMS User Manual
,” available online at http://www.mscsoftware.com
2.
Cuadrado
,
J.
,
Cardenal
,
J.
,
Morer
,
P.
, and
Bayo
,
E.
,
2000
, “
Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments
,”
Multibody Syst. Dyn.
,
4
(
1
), pp.
55
73
.10.1023/A:1009824327480
3.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics. Part 2: Trees, Loops and Accuracy
,”
Int. J. Robot. Res.
,
18
(
3
), pp.
876
892
.10.1177/02783649922066628
4.
Anderson
,
K. S.
, and
Duan
,
S.
,
2000
, “
Highly Parallelizable Low Order Dynamics Algorithm for Complex Multi-Rigid-Body Systems
,”
AIAA J. Guidance, Control Dyn.
,
23
(
2
), pp.
355
364
.10.2514/2.4531
5.
Mraz
,
L.
, and
Valasek
,
M.
,
2013
, “
Solution of Three Key Problems for Massive Parallelization of Multibody Dynamics
,”
Multibody Syst. Dyn.
,
29
(
1
), pp.
21
39
.10.1007/s11044-012-9311-1
6.
González
,
F.
,
Luaces
,
A.
,
Lugrís
,
U.
, and
González
,
M.
,
2009
, “
Non-Intrusive Parallelization of Multibody System Dynamic Simulations
,”
Comput. Mech.
,
44
(
4
), pp.
493
504
.10.1007/s00466-009-0386-3
7.
Bauchau
,
O. A.
,
2010
, “
Parallel Computation Approaches for Flexible Multibody Dynamics Simulations
,”
J. Frank. Inst.
,
347
(
1
), pp.
53
68
.10.1016/j.jfranklin.2009.10.001
8.
Quaranta
,
G.
,
Masarati
,
P.
, and
Mantegazza
,
P.
,
2002
, “
Multibody Analysis of Controlled Aeroelastic Systems on Parallel Computers
,”
Multibody Syst. Dyn.
,
8
(
1
), pp.
71
102
.10.1023/A:1015894729968
9.
Iglberger
,
K.
, and
Rüde
,
U.
,
2009
, “
Massively Parallel Rigid Body Dynamics Simulations
,”
Comput. Sci.-Res. Develop.
,
23
(
3–4
), pp.
159
167
.10.1007/s00450-009-0066-8
10.
Negrut
,
D.
,
Tasora
,
A.
,
Mazhar
,
H.
,
Heyn
,
T.
, and
Hahn
,
P.
,
2012
, “
Leveraging Parallel Computing in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
27
, pp.
95
117
.10.1007/s11044-011-9262-y
11.
Mazhar
,
H.
,
Heyn
,
T.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Seidl
,
A.
,
Bartholomew
,
A.
,
Tasora
,
A.
, and
Negrut
,
D.
,
2013
, “
Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics
,”
Mech. Sci.
,
4
(
1
), pp.
49
64
.10.5194/ms-4-49-2013
12.
Haug
,
E. J.
,
1989
,
Computer-Aided Kinematics and Dynamics of Mechanical Systems Volume-I
,
Prentice-Hall
,
Englewood Cliffs, New Jersey
.
13.
Stewart
,
D. E.
, and
Trinkle
,
J. C.
,
1996
, “
An Implicit Time-Stepping Scheme for Rigid-Body Dynamics With Inelastic Collisions and Coulomb Friction
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
2673
2691
.10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
14.
Pang
,
J. S.
, and
Stewart
,
D. E.
,
2008
, “
Differential Variational Inequalities
,”
Math. Programm.
,
113
, pp.
1
80
.10.1007/s10107-006-0052-x
15.
Anitescu
,
M.
, and
Hart
,
G. D.
,
2004
, “
A Constraint-Stabilized Time-Stepping Approach for Rigid Multibody Dynamics With Joints, Contact and Friction
,”
Int. J. Numer. Methods Eng.
,
60
(
14
), pp.
2335
2371
.10.1002/nme.1047
16.
Tasora
,
A.
, and
Anitescu
,
M.
,
2011
, “
A Matrix-Free Cone Complementarity Approach for Solving Large-Scale, Nonsmooth, Rigid Body Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
5–8
), pp.
439
453
.10.1016/j.cma.2010.06.030
17.
Heyn
,
T.
,
Anitescu
,
M.
,
Tasora
,
A.
, and
Negrut
,
D.
,
2013
, “
Using Krylov Subspace and Spectral Methods for Solving Complementarity Problems in Many-Body Contact Dynamics Simulation
,”
Int. J. Numer. Methods Eng.
,
95
(
7
), pp.
541
561
.10.1002/nme.4513
18.
Heyn
,
T.
,
2013
, “
On the Modeling, Simulation, and Visualization of Many-Body Dynamics Problems With Friction and Contact
,” Ph.D thesis, Department of Mechanical Engineering, University of Wisconsin–Madison, http://sbel.wisc.edu/documents/TobyHeynThesis_PhDfinal.pdf
19.
Khulief
,
Y. A.
,
2013
, “
Modeling of Impact in Multibody Systems: An Overview
,”
J. Comput. Nonlinear Dyn.
,
8
, p.
021012
.10.1115/1.4006202
20.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astronom. J.
,
82
, pp.
1013
1024
.10.1086/112164
21.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics-Theory and Application to Non-Spherical Stars
,”
Monthly Notices Roy. Astronom. Soc.
,
181
(
1
), pp.
375
389
.
22.
Monaghan
,
J. J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
(
1
), pp.
1703
1759
.10.1088/0034-4885/68/8/R01
23.
Monaghan
,
J. J.
,
1989
, “
On the Problem of Penetration in Particle Methods
,”
J. Comput. Phys.
,
82
(
1
), pp.
1
15
.10.1016/0021-9991(89)90032-6
24.
Dilts
,
G.
,
1999
, “
Moving-Least-Squares-Particle Hydrodynamics–I. Consistency and Stability
,”
Int. J. Numer. Methods Eng.
,
44
(
8
), pp.
1115
1155
.10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L
25.
Koshizuka
,
S.
,
Nobe
,
A.
, and
Oka
,
Y.
,
1998
, “
Numerical Analysis of Breaking Waves Using the Moving Particle Semi-Implicit Method
,”
Int. J. Numer. Methods Fluids
,
26
(
7
), pp.
751
769
.10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
26.
Dalrymple
,
R. A.
, and
Rogers
,
B. D.
,
2006
, “
Numerical Modeling of Water Waves With the SPH Method
,”
Coastal Eng.
,
53
(
2
), pp.
141
147
.10.1016/j.coastaleng.2005.10.004
27.
Pazouki
,
A.
,
Mazhar
,
H.
, and
Negrut
,
D.
,
2012
, “
Parallel Collision Detection of Ellipsoids With Applications in Large Scale Multibody Dynamics
,”
Math. Comput. Simul.
,
82
(
5
), pp.
879
894
.10.1016/j.matcom.2011.11.005
28.
Pazouki
,
A.
, and
Negrut
,
D.
,
2012
, “
Direct Simulation of Lateral Migration of Buoyant Particles in Channel Flow Using GPU Computing
,”
Proceedings of the 32nd Computers and Information in Engineering Conference, CIE32
, August 12-15, Chicago, IL, USA, American Society of Mechanical Engineers.
29.
Flynn
,
M. J.
,
1972
, “
Some Computer Organizations and Their Effectiveness
,”
IEEE Trans. Comput.
,
100
(
9
), pp.
948
960
.10.1109/TC.1972.5009071
30.
Gropp
,
W.
,
Lusk
,
E.
, and
Skjellum
,
A.
,
1999
,
Using MPI: Portable Parallel Programming with the Message-Passing Interface
,
2nd ed.
,
MIT Press
Cambridge, MA.
31.
OpenMP
,
2013
, “
Specification Standard 4.0
,” available online at http://openmp.org/wp/
32.
Patterson
,
D. A.
, and
Hennessy
,
J. L.
,
2011
,
Computer Organization and Design: The Hardware/Software Interface
,
4th ed.
,
Morgan Kaufmann
, Burlington, MA.
33.
Dennard
,
R.
,
Gaensslen
,
F.
,
Rideout
,
L.
,
Bassous
,
E.
, and
LeBlanc
,
A.
,
1974
, “
Design of Ion-Implanted MOSFET's With Very Small Physical Dimensions
,”
IEEE J. Solid-State Circuits
,
9
(
5
), pp.
256
268
.10.1109/JSSC.1974.1050511
34.
Munshi
,
A.
,
Gaster
,
B.
,
Mattson
,
T.
, and
Ginsburg
,
D.
,
2011
,
OpenCL Programming Guide
,
Addison-Wesley Professional
.
35.
NVIDIA
,
2014
, “
CUDA Programming Guide
,” available online at http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
36.
Khude
,
N.
,
Stanciulescu
,
I.
,
Melanz
,
D.
, and
Negrut
,
D.
,
2013
, “
Efficient Parallel Simulation of Large Flexible Body Systems With Multiple Contacts
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p. 041003.10.1115/1.4023915
37.
Gropp
,
W.
,
2002
, “
MPICH2: A New Start for MPI Implementations
,”
Recent Advances in Parallel Virtual Machine and Message Passing Interface
,
Springer
,
New York
, p.
7
.
38.
Graham
,
R.
,
Woodall
,
T.
, and
Squyres
,
J.
,
2006
, “
Open MPI: A Flexible High Performance MPI
,”
Parallel Processing and Applied Mathematics
,
Springer
,
New York
, pp.
228
239
.
39.
MVAPICH2
,
2013
.
MVAPICH: MPI over InfiniBand
, 10GigE/iWARP and RoCE. http://mvapich.cse.ohio-state.edu/performance/mvapich2/interNode.shtml.
40.
Bell
,
N.
, and
Garland
,
M.
,
2012
, CUSP: Generic Parallel Algorithms for Sparse Matrix and Graph Computations. Version 0.3.0.
41.
Hoberock
,
J.
, and
Bell
,
N.
,
2010
, Thrust: A Parallel Template Library. Version 1.7.0.
42.
Open MPI
,
2013
, “
A High Performance Message Passing Library
,” http://www.open-mpi.org/
43.
MPICH2
,
2013
, “
High Performance Portable MPI
,” http://http://www.mpich.org/
44.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
45.
LAMMPS
,
2013
, “
A Molecular Dynamics Simulator
,” http://lammps.sandia.gov/
46.
Parks
,
M.
,
Lehoucq
,
R.
,
Plimpton
,
S.
, and
Silling
,
S.
,
2008
, “
Implementing Peridynamics Within a Molecular Dynamics Code
,”
Comput. Phys. Commun.
,
179
(
11
), pp.
777
783
.10.1016/j.cpc.2008.06.011
47.
LIGGGHTS
,
2013
, “
Open Source Discrete Element Method Particle Simulation Code
,” http://cfdem.dcs-computing.com/?q=OpenSourceDEM
48.
Balay
,
S.
,
Brown
,
J.
,
Buschelman
,
K.
,
Eijkhout
, V
.
,
Gropp
,
W.
,
Kaushik
,
D.
,
Knepley
,
M.
,
McInnes
,
L. C.
,
Smith
,
B.
, and
Zhang
,
H.
,
2012
, “
PETSc Users Manual Revision 3.3
,”
http://
www.mcs.anl.gov/petsc/petsc-3.3/docs/manual.pdf
49.
Hindmarsh
,
A.
,
Brown
,
P.
,
Grant
,
K.
,
Lee
,
S.
,
Serban
,
R.
,
Shumaker
,
D.
, and
Woodward
,
C.
,
2005
, “
SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Softw. (TOMS)
,
31
(
3
), pp.
363
396
.10.1145/1089014.1089020
50.
Orlandea
,
N.
,
Chace
,
M. A.
, and
Calahan
,
D. A.
,
1977
, “
A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part I and Part II
,”
Trans. ASME J. Eng. Indus.
, pp.
773
784
.
51.
Shabana
,
A.
,
1989
,
Multibody Systems
,
John Wiley and Sons
,
New York
.
52.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
Cambridge, UK.
53.
Armstrong
,
W. W.
,
1979
, “
Recursive Solution to the Equations of Motion of an N-Link Manipulator
,”
Proceedings of the 5th World Congress on Theory of Machines and Mechanism
, Vol.
2
, pp.
1343
1346
.
54.
Featherstone
,
R.
,
1983
, “
The Calculation of Robot Dynamics Using Articulated-Body Inertias
,”
Int. J. Robot. Res.
,
2
(
1
), pp.
13
30
.10.1177/027836498300200102
55.
Jain
,
A.
,
1991
, “
Unified Formulation of Dynamics for Serial Rigid Multibody Systems
,”
J. Guidance
,
14
(
3
), pp.
531
542
.10.2514/3.20672
56.
Brandl
,
H.
,
Johanni
,
R.
, and
Otter
,
M.
,
1986
, “
A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix
,” In
IFAC/IFIP/IMACS Symposium (lst)
, Vienna, Austria, pp.
95
100
.
57.
Bae
,
D.
, and
Haug
,
E.
,
1987
, “
A Recursive Formulation for Constrained Mechanical System Dynamics: Part I. Open Loop Systems
,”
Mech. Struct. Mach.
,
15
(
3
), pp.
359
382
.10.1080/08905458708905124
58.
Bae
,
D.
, and
Haug
,
E.
,
1987
, “
A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems
,”
Mech. Struct. Mach.
,
15
(
4
), pp.
481
506
.10.1080/08905458708905130
59.
Rosenthal
,
D.
,
1987
, “
Order N Formulation for Equations of Motion of Multibody Systems
,”
SDIO/NASA Workshop on Multibody Simulations
, JPL Pub. D-5190, Jet Propulsion Lab., Pasadena, CA, pp.
1122
1150
.
60.
Rodriguez
,
G.
,
1987
, “
Kalman Filtering, Smoothing and Recursive Robot Arm Forward and Inverse Dynamics
,”
IEEE J. Robot. Autom.
,
3
(
6
), pp.
624
639
.10.1109/JRA.1987.1087147
61.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
,
1992
, “
Spatial Operator Algebra for Multibody System Dynamics
,”
J. Astronaut. Sci.
,
40
(
1
), pp.
27
50
.10.1.1.143.2314
62.
Fijany
,
A.
,
Shraf
,
I.
, and
D'Eleuterio
,
G.
,
1995
, “
Parallel O(log N) Computation of Manipulator Forward Dynamics
,”
IEEE J. Robot. Autom.
,
11
(
3
), pp.
389
400
.10.1109/70.388780
63.
Mukherjee
,
R.
, and
Anderson
,
K.
,
2007
, “
Orthogonal Complement Based Divide-and-Conquer Algorithm for Constrained Multibody Systems
,”
Nonlinear Dyn.
,
48
, pp.
199
215
.10.1007/s11071-006-9083-3
64.
Wittenburg
,
J.
,
1977
,
Dynamics of Systems of Rigid Bodies
,
B. G.
Teubner
,
ed.
,
Stuttgart
, Germany.
65.
Falgout
,
R.
, and
Yang
,
U. M.
,
2002
, “
Hypre: A Library of High Performance Preconditioners
,”
Preconditioners, Lecture Notes in Computer Science
, pp.
632
641
.
66.
Open Group
,
2004
, “
IEEE Std. 1003.1
,” available online at http://www.unix.org/version3/ieee_std.html
67.
SBEL
,
2013
, “
Software Downloads
,” Simulation-Based Engineering Laboratory, University of Wisconsin-Madison. http://sbel.wisc.edu/Software
68.
Negrut
,
D.
,
Tasora
,
A.
,
Anitescu
,
M.
,
Mazhar
,
H.
,
Heyn
,
T.
, and
Pazouki
,
A.
,
2011
, “
Solving Large Multi-Body Dynamics Problems on the GPU
,”
GPU Gems
Vol.
4
, pp.
269
280
.
69.
Melo
,
F.
,
Umbanhowar
,
P.
, and
Swinney
,
H. L.
,
1994
, “
Transition to Parametric Wave Patterns in a Vertically Oscillated Granular Layer
,”
Phys. Rev. Lett.
,
72
, pp.
172
175
.10.1103/PhysRevLett.72.172
70.
Umbanhowar
,
P. B.
,
Melo
,
F.
, and
Swinney
,
H. L.
,
1996
, “
Localized Excitations in a Vertically Vibrated Granular Layer
,”
Nature
,
382
(
6594
), pp.
793
796
.10.1038/382793a0
71.
Luding
,
S.
,
Clément
,
E.
,
Rajchenbach
,
J.
, and
Duran
,
J.
,
1996
, “
Simulations of Pattern Formation in Vibrated Granular Media
,”
EPL (Europhysics Letters)
,
36
(
4
), p.
247
.10.1209/epl/i1996-00217-9
72.
Bizon
,
C.
,
Shattuck
,
M. D.
,
Swift
,
J. B.
,
McCormick
,
W. D.
, and
Swinney
,
H. L.
,
1998
, “
Patterns in 3D Vertically Oscillated Granular Layers: Simulation and Experiment
,”
Phys. Rev. Lett.
,
80
(
1
), pp.
57
60
.10.1103/PhysRevLett.80.57
73.
Jaeger
,
H. M.
,
Nagel
,
S. R.
, and
Behringer
,
R. P.
,
1996
, “
Granular Solids, Liquids, and Gases
,”
Rev. Mod. Phys.
,
68
, pp.
1259
1273
.10.1103/RevModPhys.68.1259
74.
Moon
,
S. J.
,
Swift
,
J. B.
, and
Swinney
,
H. L.
,
2004
, “
Role of Friction in Pattern Formation in Oscillated Granular Layers
,”
Phys. Rev. E
,
69
, p.
031301
.10.1103/PhysRevE.69.031301
75.
Mazhar
,
H.
,
Heyn
,
T.
, and
Negrut
,
D.
,
2011
, “
A Scalable Parallel Method for Large Collision Detection Problems
,”
Multibody Syst. Dyn.
,
26
, pp.
37
55
.10.1007/s11044-011-9246-y
76.
SBEL
,
2013
, “
Movies, Physics-Based Modeling and Simulation
,” http://sbel.wisc.edu/Animations
77.
Amdahl
,
G.
,
1967
, “
Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities
,”
AFIPS Conf. Proc.
,
30
, pp.
483
485
.10.1145/1465482.1465560
78.
Knuth
,
D.
,
1974
, “
Structured Programming With go to Statements
,”
ACM Comput. Surv. (CSUR)
,
6
(
4
), pp.
261
301
.10.1145/356635.356640
You do not currently have access to this content.