Index-3 augmented Lagrangian formulations with projections of velocities and accelerations represent an efficient and robust method to carry out the forward-dynamics simulation of multibody systems modeled in dependent coordinates. Existing formalisms, however, were only established for holonomic systems, for which the expression of the constraints at the position-level is known. In this work, an extension of the original algorithms for nonholonomic systems is introduced. Moreover, projections of velocities and accelerations have two side effects: they modify the kinetic energy of the system and they contribute to the constraint reaction forces. Although the effects of the projections on the energy have been studied by several authors, their role in the calculation of the reaction forces has not been described so far. In this work, expressions to determine the constraint reactions from the Lagrange multipliers of the dynamic equations and the Lagrange multipliers of the velocity and acceleration projections are introduced. Simulation results show that the proposed strategy can be used to expand the capabilities of index-3 augmented Lagrangian algorithms, making them able to deal with nonholonomic constraints and provide correct reaction efforts.

References

References
1.
Haug
,
E. J.
,
1989
,
Computer Aided Kinematics and Dynamics of Mechanical Systems
,
Allyn and Bacon, Inc.
,
Boston, MA
.
2.
García de Jalón
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge
,
Springer
,
New York
.
3.
Paul
,
B.
, and
Krajcinovic
,
D.
,
1970
, “
Computer Analysis of Machines With Planar Motion
,”
ASME J. Appl. Mech.
,
37
(
3
), pp.
697
712
.10.1115/1.3408599
4.
Sheth
,
P.
, and
Uicker
,
J.
,
1972
, “
IMP (Integrated Mechanism Program): A Computer-Aided Design Analysis System for Mechanisms and Linkages
,”
ASME J. Eng. Ind.
,
94
(2), pp.
454
464
.10.1115/1.3428176
5.
Smith
,
D.
,
Chace
,
M.
, and
Rubens
,
A.
,
1973
, “
The Automatic Generation of a Mathematical Model for Machinery Systems
,”
ASME J. Eng. Ind.
,
95
(2), pp.
629
635
.10.1115/1.3438201
6.
Brenan
,
K.
,
Campbell
,
S.
, and
Petzold
,
L.
,
1989
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
New York
.
7.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(1), pp.
1
16
.10.1016/0045-7825(72)90018-7
8.
Serna
,
M. A.
,
Avilés
,
R.
, and
García de Jalón
,
J.
,
1982
, “
Dynamic Analysis of Plane Mechanisms With Lower Pairs in Basic Coordinates
,”
Mech. Mach. Theor.
,
17
(
6
), pp.
397
403
.10.1016/0094-114X(82)90032-5
9.
Wehage
,
R.
, and
Haug
,
E.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Mechanical Systems
,”
ASME J. Mech. Des.
,
104
, pp.
247
255
.10.1115/1.3256318
10.
Bayo
,
E.
,
García de Jalón
,
J.
, and
Serna
,
M. A.
,
1988
, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
183
195
.10.1016/0045-7825(88)90085-0
11.
Bayo
,
E.
, and
Ledesma
,
R.
,
1996
, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
113
130
.10.1007/BF01833296
12.
Cuadrado
,
J.
,
Cardenal
,
J.
,
Morer
,
P.
, and
Bayo
,
E.
,
2000
, “
Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments
,”
Multibody Syst. Dyn.
,
4
(
1
), pp.
55
73
.10.1023/A:1009824327480
13.
Cuadrado
,
J.
,
Gutierrez
,
R.
,
Naya
,
M.
, and
Morer
,
P.
,
2001
, “
A Comparison in Terms of Accuracy and Efficiency Between a MBS Dynamic Formulation With Stress Analysis and a Non-Linear FEA Code
,”
Int. J. Numer. Methods Eng.
,
51
(
9
), pp.
1033
1052
.10.1002/nme.191
14.
García Orden
,
J.
, and
Goicolea
,
J.
,
2000
, “
Conserving Properties in Constrained Dynamics of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
4
(
2–3
), pp.
225
244
.10.1023/A:1009871728414
15.
Goicolea
,
J.
, and
García Orden
,
J.
,
2000
, “
Dynamic Analysis of Rigid and Deformable Multibody Systems With Penalty Methods and Energy-Momentum Schemes
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
4
), pp.
789
804
.10.1016/S0045-7825(99)00362-X
16.
Goicolea
,
J.
, and
García Orden
,
J.
,
2002
, “
Quadratic and Higher-Order Constraints in Energy-Conserving Formulations of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
7
(
1
), pp.
3
29
.10.1023/A:1015292531469
17.
García Orden
,
J.
, and
Ortega
,
R.
,
2006
, “
A Conservative Augmented Lagrangian Algorithm for the Dynamics of Constrained Mechanical Systems
,”
Mech. Based Des. Struct. Mach.
,
34
(4), pp.
449
468
.10.1080/15397730601044911
18.
García Orden
,
J. C.
, and
Dopico
,
D.
,
2007
, “
Multibody Dynamics. Computational Methods and Applications
,”
On the Stabilizing Properties of Energy-Momentum Integrators and Coordinate Projections for Constrained Mechanical Systems
,
Springer
, Dordrecht, The Netherlands, pp.
49
67
.
19.
García Orden
,
J.
,
2010
, “
Energy Considerations for the Stabilization of Constrained Mechanical Systems With Velocity Projection
,”
Nonlinear Dyn.
,
60
(1–2), pp.
49
62
.10.1007/s11071-009-9579-8
20.
García Orden
,
J.
, and
Conde
,
S.
,
2012
, “
Controllable Velocity Projection for Constraint Stabilization in Multibody Dynamics
,”
Nonlinear Dyn.
,
68
(1–2), pp.
245
257
.10.1007/s11071-011-0224-y
21.
Cuadrado
,
J.
,
Dopico
,
D.
,
Naya
,
M. A.
, and
González
,
M.
,
2004
, “
Penalty, Semi-Recursive and Hybrid Methods for MBS Real-Time Dynamics in the Context of Structural Integrators
,”
Multibody Syst. Dyn.
,
12
(
2
), pp.
117
132
.10.1023/B:MUBO.0000044421.04658.de
22.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics—A Finite Element Approach
,
2nd ed.
,
Wiley
,
Chichester, England
.
23.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
ASCE J. Eng. Mech. Div.
,
85
(
EM3
), pp.
67
94
.
You do not currently have access to this content.