This paper summarizes the various recent advancements achieved by utilizing the divide-and-conquer algorithm (DCA) to reduce the computational burden associated with many aspects of modeling, designing, and simulating articulated multibody systems. This basic algorithm provides a framework to realize O(n) computational complexity for serial task scheduling. Furthermore, the framework of this algorithm easily accommodates parallel task scheduling, which results in coarse-grain O(logn) computational complexity. This is a significant increase in efficiency over forming and solving the Newton–Euler equations directly. A survey of the notable previous work accomplished, though not all inclusive, is provided to give a more complete understanding of how this algorithm has been used in this context. These advances include applying the DCA to constrained systems, flexible bodies, sensitivity analysis, contact, and hybridization with other methods. This work reproduces the basic mathematical framework for applying the DCA in each of these applications. The reader is referred to the original work for the details of the discussed methods.

References

References
1.
Hooker
,
W. W.
, and
Margulies
,
G.
,
1965
, “
The Dynamical Attitude Equations for an n-Body Satellite
,”
J. Astronaut. Sci.
,
7
(
4
), pp.
123
128
.
2.
Walker
,
M. W.
, and
Orin
,
D. E.
,
1982
, “
Efficient Dynamic Computer Simulation of Robotic Mechanisms
,”
ASME J. Dyn. Syst., Meas., Control
,
104
(
3
), pp.
205
211
.10.1115/1.3139699
3.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Application
,
McGraw-Hill
,
New York
.
4.
Featherstone
,
R.
,
1987
,
Robot Dynamics Algorithms
,
Kluwer
,
Dordrecht, Netherlands
.
5.
Hollerbach
,
J.
,
1980
.,“
A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity
,”
IEEE Trans Syst. Man Cybern.
,
10
(
11
), pp.
730
736
.10.1109/TSMC.1980.4308393
6.
Luh
,
J. S. Y.
,
Walker
,
M. W.
, and
Paul
,
R. P. C.
,
1980
, “
On-Line Computational Scheme for Mechanical Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
102
(
2
), pp.
69
76
.10.1115/1.3149599
7.
Armstrong
,
W. W.
,
1979
, “
Recursive Solution to the Equations of Motion of an n-Link Manipulator
,”
Proceedings of the Fifth World Congress on the Theory of Machines and Mechanisms
, Vol.
2
, Montreal, Canada, July 8–13, 1979, pp.
1342
1346
.
8.
Vereshchagin
,
A. F.
,
1974
, “
Computer Simulation of the Dynamics of Complicated Mechanisms of Robot-Manipulators
,”
Eng. Cybern.
,
12
(
6
), pp.
65
70
.
9.
Vereshchagin
,
A. F.
,
1975
, “
Gauss Principle of Least Constraint For Modeling the Dynamics of Automatic Manipulators Using a Digital Computer
,”
Sov. Phys.– Dokl.
,
20
(
1
), pp.
33
34
.
10.
Featherstone
,
R.
,
1983
, “
The Calculation of Robotic Dynamics Using Articulated Body Inertias
,”
Int.l J. Robot. Res.
,
2
(
1
), pp.
13
30
.10.1177/027836498300200102
11.
Bae
,
D. S.
, and
Haug
,
E. J.
,
1987
, “
A Recursive Formation for Constrained Mechanical System Dynamics: Part I, Open Loop Systems
,”
Mech. Struct. Mach.
,
15
(
3
), pp.
359
382
.10.1080/08905458708905124
12.
Bae
,
D. S.
, and
Haug
,
E. J.
,
1987
, “
A Recursive Formation for Constrained Mechanical System Dynamics: Part II, Closed Loop Systems
,”
Mech. Struct. Mach.
,
15
(
4
), pp.
481
506
.10.1080/08905458708905130
13.
Brandl
,
H.
,
Johanni
,
R.
, and
Otter
,
M.
,
1986
, “
A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix
,”
Proceedings of the IFAC/IFIP/IMACS Symposium
, pp.
95
100
.
14.
Rodriguez
,
G.
,
1987
, “
Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and Inverse Dynamics
,”
IEEE J. Rob. Autom.
,
RA-3
(
6
), pp.
624
639
.10.1109/JRA.1987.1087147
15.
Rosenthal
,
D.
,
1990
.,“
An Order n Formulation for Robotic Systems
,”
J. Astronaut. Sci.
,
38
(
4
), pp.
511
529
.
16.
Anderson
,
K. S.
,
1992
, “
An Order-n Formulation for Motion Simulation of General Constrained Multi-Rigid-Body Systems
,”
Comput. Struct.
,
43
(
3
), pp.
565
572
.10.1016/0045-7949(92)90289-C
17.
Jain
,
A.
,
1991
, “
Unified Formulation of Dynamics for Serial Rigid Multibody Systems
,”
J. Guid. Control Dyn.
,
14
(
3
), pp.
531
542
.10.2514/3.20672
18.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
,
1992
, “
Spatial Operator Algebra for Multibody System Dynamics
,”
J. Astronaut.Sci.
,
40
(
1
), pp.
27
50
.
19.
Jain
,
A.
,
Vaidehi
,
N.
, and
Rodriguez
,
G.
,
1993
, “
A Fast Recursive Algorithm for Molecular Dynamics Simulation
,”
J. Comput. Phys.
,
106
(
2
), pp.
258
268
.
20.
Kim
,
S. S.
, and
Haug
,
E. J.
,
1988
, “
Recursive Formulation for Flexible Multibody Dynamics: Part I, Open-Loop Systems
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
3
), pp.
293
314
.10.1016/0045-7825(88)90037-0
21.
Jain
,
A.
, and
Rodriguez
,
G.
,
1992
, “
Recursive Flexible Multibody System Dynamics Using Spatial Operators
,”
J. Guid. Control Dyn.
,
15
(
6
), pp.
1453
1466
.10.2514/3.11409
22.
Kasahara
,
H.
,
Fujii
,
H.
, and
Iwata
,
M.
,
1987
, “
Parallel Processing of Robot Motion Simulation
,”
Proceedings of the IFAC 10th World Conference
.
23.
Bae
,
D.-S.
,
Kuhl
,
J. G.
, and
Haug
,
E. J.
,
1988
, “
A Recursive Formulation for Constrained Mechanical System Dynamics: Part III. Parallel Processor Implementation
,”
Mech. Based Des. Struct. Mach.
,
16
(
2
), pp.
249
269
.10.1080/08905458808960263
24.
Hwang
,
R. S.
,
Bae
,
D.
,
Kuhl
,
J. G.
, and
Haug
,
E. J.
,
1990
, “
Parallel Processing for Real-Time Dynamics Systems Simulations
,”
ASME J. Mech. Des.
,
112
(
4
), pp.
520
528
.10.1115/1.2912641
25.
Fijany
,
A.
, and
Bejczy
,
A. K.
,
1991
, “
Techniques for Parallel Computation of Mechanical Manipulator Dynamics. Part II: Forward Dynamics
,”
Advances in Robotic Systems and Control
, Vol.
40
,
C.
Leondes
, ed.,
Academic
,
New York
, pp.
357
410
.
26.
Fijany
,
A.
, and
Bejczy
,
A. K.
,
1993
, “
Parallel Computation of Forward Dynamics of Manipulators
,” NASA Jet Propulsion Laboratory, NASA Technical Brief, Report No. NPO-18706-12.
27.
Fijany
,
A.
,
Sharf
,
I.
, and
D'Eleuterio
,
G. M. T.
,
1995
, “
Parallel O(log n) Algorithms for Computation of Manipulator Forward Dynamics
,”
IEEE Trans. Rob. Autom.
,
11
(
3
), pp.
389
400
.10.1109/70.388780
28.
Anderson
,
K.
, and
Duan
,
S.
,
1999
, “
A Hybrid Parallelizable Low-Order Algorithm for Dynamics of Multi-Rigid-Body Systems: Part I, Chain Systems
,”
Math. Comput. Modell.
,
30
(
9–10
), pp.
193
215
.10.1016/S0895-7177(99)00190-9
29.
Liu
,
J. F.
, and
Abdel-Malek
,
K. A.
,
1999
, “
On the Problem of Scheduling Parallel Computations of Multibody Dynamic Analysis
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, pp.
370
376
.10.1115/1.2802484
30.
Lee
,
S. S.
,
1988
, “
Symbolic Generation of Equation of Motion for Dynamics/Control Simulation of Large Flexible Multibody Space Systems
,” Ph.D. thesis, University of California, Los Angeles.
31.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics. Part 1: Basic Algorithm
,”
Int. J. Robot. Res.
,
18
(
9
), pp.
867
875
.10.1177/02783649922066619
32.
Featherstone
,
R.
,
1999
, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics. Part 2: Trees, Loops, and Accuracy
,”
Int. J. Robot. Res.
,
18
(
9
), pp.
876
892
.10.1177/02783649922066628
33.
Yamane
,
K.
, and
Nakamura
,
Y.
,
2002
, “
Efficient Parallel Dynamics Computation of Human Figures
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
530
537
.
34.
Yamane
,
K.
, and
Nakamura
,
Y.
,
2007
, “
Automatic Scheduling for Parallel Forward Dynamics Computation of Open Kinematic Chains
,”
Robotics: Science and Systems
,
MIT Press
,
Cambridge, MA
, pp.
193
199
.
35.
Yamane
,
K.
, and
Nakamura
,
Y.
,
2009
, “
Comparative Study on Serial and Parallel Forward Dynamics Algorithms for Kinematic Chains
,”
Int. J. Robot.Res.
,
28
(
5
), pp.
622
629
.10.1177/0278364909102350
36.
Yamane
,
K.
, and
Nakamura
,
Y.
,
2006
, “
Parallel O(log n) Algorithm for Dynamics Simulation of Humanoid Robots
,”
Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots
, pp.
554
559
.
37.
Mukherjee
,
R. M.
,
Crozier
,
P. S.
,
Plimpton
,
S. J.
, and
Anderson
,
K. S.
,
2008
, “
Substructured Molecular Dynamics Using Multibody Dynamics Algorithms
,”
Int.J. Non-Linear Mech.
,
43
(
10
), pp.
1040
1055
.10.1016/j.ijnonlinmec.2008.04.003
38.
Poursina
,
M.
,
Bhalerao
,
K. D.
,
Flores
,
S.
,
Anderson
,
K. S.
, and
Laederach
,
A.
,
2011
, “
Strategies for Articulated Multibody-Based Adaptive Coarse Grain Simulation of RNA. Methods in Enzymology
,”
Methods Enzymol.
,
487
, pp.
73
98
.10.1016/B978-0-12-381270-4.00003-2
39.
Poursina
,
M.
,
2011
, “
Robust Framework for the Adaptive Multiscale Modeling of Biopolymers
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy.
40.
Redon
,
S.
,
Galoppo
,
N.
, and
Lin
,
M. C.
,
2005
, “
Adaptive Dynamics of Articulated Bodies
,”
ACM Trans. Graphics
,
24
(
3
), pp.
936
945
.10.1145/1073204.1073294
41.
Praprotnik
,
M.
,
Site
,
L.
, and
Kremer
,
K.
,
2005
, “
Adaptive Resolution Molecular-Dynamics Simulation: Changing the Degrees of Freedom on the Fly
,”
J. Chem. Phys.
,
123
(
22
), p.
224106
.10.1063/1.2132286
42.
Bosson
,
M.
,
Grudinin
,
S.
,
Bouju
,
X.
, and
Redon
,
S.
,
2012
, “
Interactive Physically-Based Structural Modeling of Hydrocarbon Systems
,”
J. Comput. Phys.
,
231
(
6
), pp.
2581
2598
.10.1016/j.jcp.2011.12.006
43.
Mukherjee
,
R.
, and
Anderson
,
K. S.
,
2007
, “
An Orthogonal Complement Based Divide-and-Conquer Algorithm for Constrained Multibody Systems
,”
Nonlinear Dyn.
,
48
(
1–2
), pp.
199
215
.10.1007/s11071-006-9083-3
44.
Khan
,
I.
, and
Anderson
,
K.
,
2013
.,“
Performance Investigation and Constraint Stabilization Approach for the Orthogonal Complement-Based Divide-and-Conquer Algorithm
,”
Mech. Mach. Theory
,
67
(
0
), pp.
111
121
.10.1016/j.mechmachtheory.2013.04.009
45.
Malczyk
,
P.
,
Fraczek
,
J.
, and
Cuadrado
,
J.
,
2010
, “
Parallel Index-3 Formulation for Real-Time Multibody Dynamics Simulations
,”
Proceedings of the 1st Joint International Conference on Multibody System Dynamics
.
46.
Malczyk
,
P.
, and
Fraczek
,
J.
,
2012
, “
A Divide and Conquer Algorithm for Constrained Multibody System Dynamics Based on Augmented Lagrangian Method With Projections-Based Error Correction
,”
Nonlinear Dyn.
,
70
(
1
), pp.
871
889
.10.1007/s11071-012-0503-2
47.
Malczyk
,
P.
, and
Mukherjee
,
R.
,
2013
, “
Parallel Algorithm for Modeling Multi-Rigid Body System Dynamics With Nonholonomic Constraints
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
48.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2012
, “
An Extended Divide-and-Conquer Algorithm for a Generalized Class of Multibody Constraints
,”
Multibody Syst. Dyn.
,
29
(
3
), pp.
235
254
.10.1007/s11044-012-9324-9
49.
Roberson
,
R. E.
, and
Schwertassek
,
R.
,
1988
,
Dynamics of Multibody Systems
,
Springer-Verlag
,
New York
.
50.
Shabana
,
A. A.
,
1998
,
Dynamics of Multibody Systems
,
2nd ed.
,
Cambridge Univerisity Press
,
Cambridge, UK
.
51.
Mukherjee
,
R.
, and
Anderson
,
K. S.
,
2007
, “
A Logarithmic Complexity Divide-and-Conquer Algorithm for Multi-Flexible Articulated Body Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
10
21
.10.1115/1.2389038
52.
Mukherjee
,
R. M.
,
Bhalerao
,
K. D.
, and
Anderson
,
K. S.
,
2007
, “
A Divide-and-Conquer Direct Differentiation Approach for Multibody System Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
35
(
5
), pp.
413
429
.10.1007/s00158-007-0142-2
53.
Bhalerao
,
K. D.
,
Poursina
,
M.
, and
Anderson
,
K. S.
,
2010
, “
An Efficient Direct Differentiation Approach for Sensitivity Analysis of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
23
(
2
), pp.
121
140
.10.1007/s11044-009-9176-0
54.
Mukherjee
,
R. M.
, and
Anderson
,
K. S.
,
2007
, “
Efficient Methodology for Multibody Simulations With Discontinuous Changes In System Definition
,”
Multibody Syst. Dyn.
,
18
, pp.
145
168
.10.1007/s11044-007-9075-1
55.
Poursina
,
M.
,
Bhalerao
,
K. D.
, and
Anderson
,
K. S.
,
2009
, “
Energy Concern in Biomolecular Simulations With Discontinuous Changes in System Definition
,”
Proceedings of the ECCOMAS Thematic Conference—Multibody Systems Dynamics
.
56.
Anderson
,
K. S.
, and
Poursina
,
M.
,
2009
, “
Energy Concern in Biomolecular Simulations With Transition From a Coarse to a Fine Model
,”
Proceedings of the Seventh International Conference on Multibody Systems, Nonlinear Dynamics, and Control, ASME Design Engineering Technical Conference 2009 (IDETC09)
, Paper No. IDETC2009/MSND-87297.
57.
Anderson
,
K. S.
, and
Poursina
,
M.
,
2009
.,“
Optimization Problem in Biomolecular Simulations With DCA-Based Modeling of Transition From a Coarse to a Fine Fidelity
,”
Proceedings of the Seventh International Conference on Multibody Systems, Nonlinear Dynamics, and Control, ASME Design Engineering Technical Conference 2009 (IDETC09)
, Paper No. IDETC2009/MSND-87319.
58.
Poursina
,
M.
,
2011
, “
Robust Framework for the Adaptive Multiscale Modeling of Biopolymers
,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy.
59.
Bhalerao
,
K. D.
,
Anderson
,
K. S.
, and
Trinkle
,
J. C.
,
2009
, “
A Recursive Hybrid Time-Stepping Scheme for Intermittent Contact in Multi-Rigid-Body Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041010
.10.1115/1.3192132
60.
Ferris
,
M.
, and
Munson
,
T.
,
1999
, “
Interfaces to PATH 3.0: Design, Implementation and Usage
,”
Comput. Optim. Appl.
,
12
, pp.
207
227
.10.1023/A:1008636318275
61.
Bhalerao
,
K.
, and
Anderson
,
K.
,
2010
, “
Modeling Intermittent Contact for Flexible Multibody Systems
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
63
79
.10.1007/s11071-009-9580-2
62.
Bhalerao
,
K.
,
Crean
,
C.
, and
Anderson
,
K.
,
2011
, “
Hybrid Complementarity Formulations for Robotics Applications
,”
ZAMM
,
91
(
5
), pp.
386
399
.10.1002/zamm.201000093
63.
Anderson
,
K. S.
, and
Critchley
,
J. H.
,
2003
.,“
Improved Order-n Performance Algorithm for the Simulation of Constrained Multi-Rigid-Body Systems
,”
Multibody Syst. Dyn.
,
9
, pp.
185
212
.10.1023/A:1022566107679
64.
Anderson
,
K. S.
,
1993
, “
An Order–n Formulation for the Motion Simulation of General Multi-Rigid-Body Tree Systems
,”
Comput. Struct.
,
46
(
3
), pp.
547
559
.10.1016/0045-7949(93)90224-2
65.
Bhalerao
,
K. D.
,
Critchley
,
J.
, and
Anderson
,
K.
,
2012
, “
An Efficient Parallel Dynamics Algorithm for Simulation of Large Articulated Robotic Systems
,”
Mech. Mach. Theory
,
53
, pp.
86
98
.10.1016/j.mechmachtheory.2012.03.001
You do not currently have access to this content.