Approximate higher-order filters are more attractive and popular in control and signal processing literature in contrast to the exact filter, since the analytical and numerical solutions of the nonlinear exact filter are not possible. The filtering model of this paper involves stochastic differential equation (SDE) formalism in combination with a nonlinear discrete observation equation. The theory of this paper is developed by adopting a unified systematic approach involving celebrated results of stochastic calculus. The Kolmogorov–Fokker–Planck equation in combination with the Kolmogorov backward equation plays the pivotal role to construct the theory of this paper “between the observations.” The conditional characteristic function is exploited to develop “filtering” at the observation instant. Subsequently, the efficacy of the filtering method of this paper is examined on the basis of its comparison with extended Kalman filtering and true state trajectories. This paper will be of interest to applied mathematicians and research communities in systems and control looking for stochastic filtering methods in theoretical studies as well as their application to real physical systems.

References

References
1.
Jazwinski
,
A. H.
,
1970
,
Stochastic Processes and Filtering Theory
,
Academic Press
,
New York
.
2.
Vergez
,
P.
,
Sauter
,
L.
, and
Dalke
,
S.
,
2004
, “
An Improved Kalman Filter for Satellite Orbit Predictions
,”
J. Astronaut. Sci.
,
52
(
3
), pp.
1
22
.
3.
Kushner
,
H. J.
,
1967
, “
Approximations to Optimal Non-Linear Filters
,”
IEEE Trans. Autom. Control
,
12
(
5
), pp.
546
556
.10.1109/TAC.1967.1098671
4.
Pugachev
,
V. S.
, and
Sinitsyn
,
I. N.
,
1987
,
Stochastic Differential Systems (Analysis and Filtering)
,
Wiley
,
New York
.
5.
Gelb
,
A.
, ed.,
1974
,
Applied Optimal Estimation
,
MIT
,
Cambridge, MA
.
6.
Beirman
,
G. J.
,
2006
,
Factorization Methods for Discrete Sequential Estimation
,
Dover
,
New York
.
7.
Park
,
R. S.
, and
Scheeres
,
D. J.
,
2006
, “
Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design
,”
J. Guid. Control Dyn.
,
29
(
6
), pp.
1367
1375
.10.2514/1.20177
8.
Sharma
,
S. N.
,
Parthasarathy
,
H.
, and
Gupta
,
J. R. P.
,
2006
, “
Third-Order Approximate Kushner Filter for a Non-Linear Dynamical System
,”
Int. J. Control
,
79
(
9
), pp.
1096
1106
.10.1080/00207170600800124
9.
Majji
,
M.
,
Junkins
,
J. L.
, and
Turner
,
J. D.
,
2010
, “
A Perturbation Method for Estimation of Dynamic Systems
,”
J. Astronaut. Sci.
,
60
, pp.
303
325
.
10.
Wishner
,
R. P.
,
Tabaczynski
,
J. A.
, and
Athans
,
M.
,
1969
, “
A Comparison of Three Non-Linear Filters
,”
Automatica
,
5
, pp.
487
496
.10.1016/0005-1098(69)90110-1
11.
Pitt
,
M. K.
, and
Shephard
,
N.
,
1999
, “
Filtering Via Simulations: Auxiliary Particle Filtering
,”
J. Am. Stat. Assoc.
,
94
, pp.
590
599
.10.1080/01621459.1999.10474153
12.
Sharma
,
S. N.
,
2009
, “
A Kushner Approach for Small Random Perturbations of the Stochastic Duffing-van der Pol System
,”
Automatica
,
45
, pp.
1097
1099
.10.1016/j.automatica.2008.12.010
13.
Majji
,
M.
,
Junkins
,
J. L.
, and
Turner
,
J. D.
,
2008
, “
A High Order Method for Estimation of Dynamic Systems
,”
J. Astronaut. Sci.
,
56
(
3
), pp.
1
35
.10.1007/BF03256539
14.
Karatzas
,
I.
, and
Shreve
,
S. E.
,
1991
,
Brownian Motion and Stochastic Calculus (Graduate Texts in Mathematics)
,
Springer
,
New York
.
15.
Feller
,
W.
,
2000
,
An Introduction to Probability Theory and its Applications
,
Wiley
,
New York
.
16.
Haffman
,
K.
, and
Kunze
,
R.
,
1971
,
Linear Algebra
,
Pearson
,
London
.
17.
Park
,
R. S.
, and
Scheeres
,
D. J.
,
2007
, “
Nonlinear Semi Analytic Methods for Trajectory Estimation
,”
J. Guid. Control Dyn.
,
30
(
6
), pp.
1668
1676
.10.2514/1.29106
18.
Rosenblatt
,
M.
,
1985
,
Stationary Sequences and Random Fields
,
Birkhäuser
,
Boston
.
19.
Chang
,
R. L.
,
1990
, “
Pre-Computed-Gain Non-Linear Filters for Non-Linear Systems With State-Dependent Noise
,”
ASME J. Dyn. Syst., Meas., Control
,
112
, pp.
270
275
.10.1115/1.2896135
20.
Arnold
,
V. I.
,
1995
,
Ordinary Differential Equations
,
MIT
,
Cambridge, MA
.
You do not currently have access to this content.