This work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and underactuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it, and poor robustness and suboptimal performance result if it is not accounted for in a given design. In this work uncertainties are modeled using generalized polynomial chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and underactuated systems, prescribes deterministic actuator inputs that yield uncertain state trajectories. The inverse dynamics formulation is the dual to that of forward dynamics, and is only applicable to fully actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to underactuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories that yield uncertain unactuated states and uncertain actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space.

References

References
1.
Park
,
J.
,
2007
, “Optimal Motion Planning for Manipulator Arms Using Nonlinear Programming,” Industrial Robotics, Programming, Simulation and Applications, J. K. Low, ed., Verlag, Croatia.
2.
Chong Jin
,
O.
, and
Gilbert
,
E. G.
,
1996
, “
Growth Distances: New Measures for Object Separation and Penetration
,”
IEEE Trans. Robotics Autom.
,
12
(
6
), pp.
888
903
.10.1109/70.544772
3.
Park
,
F.
,
Bobrow
,
J.
, and
Ploen
,
S.
,
1995
, “
A Lie Group Formulation of Robot Dynamics
,”
Int. J. Robotics Res.
,
14
(
6
), pp.
609–618
.10.1177/027836499501400606
4.
Ploen
,
S.
,
1997
, “
Geometric Algorithms for the Dynamics and Control of Multibody Systems
,” Ph.D. thesis, University of California, Irvine, CA.
5.
Park
,
F. C.
, and
Bobrow
,
J. E.
,
1994
, “
A Recursive Algorithm for Robot Dynamics Using Lie Groups
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1535
1540
.
6.
Martin
,
B.
, and
Bobrow
,
J.
,
1999
, “
Minimum-Effort Motions for Open-Chain Manipulators With Task-Dependent End-Effector Constraints
,”
Int. J. Robotics Res.
,
18
(
2
), pp.
213–224
.10.1177/02783649922066169
7.
Sohl
,
G. A.
, and
Bobrow
,
J. E.
,
2001
, “
A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematic Chains
,”
ASME J. Dyn. Syst. Measure. Control
,
123
(
3
), pp.
391
399
.10.1115/1.1376121
8.
Bobrow
,
J. E.
, and
Sohl
,
G. A.
,
2002
, “
On the Reliable Computation of Optimal Motions for Underactuated Manipulators
,”
Electron. J. Comp. Kinemat.
,
1
(
1
).
9.
Bobrow
,
J.
,
Martin
,
B.
,
Sohl
,
G.
,
Wang
,
E.
,
Park
,
F.
, and
Kim
,
J.
,
2001
, “
Optimal Robot Motions for Physical Criteria
,”
J. Robotic Syst.
,
18
(
12
), pp.
785
795
.10.1002/rob.8116
10.
Sohl
,
G.
,
2000
, “
Optimal Dynamic Motion Planning for Underactuated Robots
,” Ph.D. thesis, University of California, Irvine, CA.
11.
Wang
,
C.
,
Timoszyk
,
W.
, and
Bobrow
,
J.
,
1999
, “
Weightlifting Motion Planning for a Puma 762 Robot
,” Proc. IEEE International Conference on Robotics and Automation, Vol.
1
, pp.
480
485
.
12.
Wang
,
C.
,
2001
, “
Dynamic Motion Planning for Robot Manipulators Using B-Splines
,” Ph.D. thesis, University of California, Irvine, CA.
13.
Junggon
,
K.
,
Jonghyun
,
B.
, and
Park
,
F. C.
,
1999
, “
Newton-Type Algorithms for Robot Motion Optimization
,”
Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
3
, pp.
1842
1847
.
14.
Bobrow
,
J. E.
,
Park
,
F. C.
, and
Sideris
,
A.
,
2006
,
Fast Motions in Biomechanics and Robotics
,
Springer
,
Berlin
.
15.
Lee
,
S. H.
,
Kim
,
J.
,
Park
,
F. C.
,
Kim
,
M.
, and
Bobrow
,
J. E.
,
2005
, “
Newton-Type Algorithms for Dynamics-Based Robot Movement Optimization
,”
IEEE Trans. Robotics
,
21
(
4
), pp.
657
667
.10.1109/TRO.2004.842336
16.
Xiang
,
Y.
,
Arora
,
J.
, and
Abdel-Malek
,
K.
,
2009
, “
Optimization-Based Motion Prediction of Mechanical Systems: Sensitivity Analysis
,”
Struct. Multidisciplin. Optim.
,
37
(
6
), pp.
595
608
.10.1007/s00158-008-0247-2
17.
Xiang
,
Y.
,
Chung
,
H.
,
Mathai
,
A.
,
Rahmatalla
,
S.
,
Kim
,
J.
,
Marler
,
T.
,
Beck
,
S.
,
Yang
,
J.
,
Arora
,
J.
, and
Abdel-Malek
,
K.
,
2007
, “
Optimization-Based Dynamic Human Walking Prediction
,”
SAE
Technical Paper 2007-01-2489.10.4271/2007-01-2489
18.
Chung
,
H.
,
Xiang
,
Y.
,
Mathai
,
A.
,
Rahmatalla
,
S.
,
Kim
,
J.
,
Marler
,
T.
,
Beck
,
S.
,
Yang
,
J.
,
Arora
,
J.
, and
Abdel-Malek
,
K.
,
2007
, “
A Robust Formulation for Prediction of Human Running
,” DTIC, pp.
16
18
.
19.
Xiang
,
Y.
,
Arora
,
J. S.
,
Rahmatalla
,
S.
, and
Abdel-Malek
,
K.
,
2009
, “
Optimization-Based Dynamic Human Walking Prediction: One Step Formulation
,”
Int. J. Numer. Methods Eng.
,
79
(
6
), pp.
667
695
.10.1002/nme.2575
20.
Xiang
,
Y.
,
Chung
,
H.-J.
,
Kim
,
J.
,
Bhatt
,
R.
,
Rahmatalla
,
S.
,
Yang
,
J.
,
Marler
,
T.
,
Arora
,
J.
, and
Abdel-Malek
,
K.
,
2010
, “
Predictive Dynamics: An Optimization-Based Novel Approach for Human Motion Simulation
,”
Struct. Multidisciplin. Optim.
,
41
(
3
), pp.
465
479
.10.1007/s00158-009-0423-z
21.
Xiang
,
Y.
,
Arora
,
J.
, and
Abdel-Malek
,
K.
,
2010
, “
Physics-Based Modeling and Simulation of Human Walking: A Review of Optimization-Based and Other Approaches
,”
Struct. Multidisciplin. Optim.
,
42
(
1
), pp.
1
23
.10.1007/s00158-010-0496-8
22.
Xiang
,
Y.
,
2008
, “
Optimization-Based Dynamic Human Walking Prediction
,” Ph.D. thesis, University of Iowa, Iowa City, IA.
23.
Kim
,
H.
,
Wang
,
Q.
,
Rahmatalla
,
S.
,
Swan
,
C.
,
Arora
,
J.
,
Abdel-Malek
,
K.
, and
Assouline
,
J.
,
2008
, “
Dynamic Motion Planning of 3D Human Locomotion Using Gradient-Based Optimization
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031002
.10.1115/1.2898730
24.
Diehl
,
M.
,
Ferreau
,
H.
, and
Haverbeke
,
N.
,
2009
, “
Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation
,”
Nonlinear Model Predictive Control
,
384
, pp.
391
417
.10.1007/978-3-642-01094-1
25.
Biegler
,
L. T.
,
2003
, “
Optimization of ODE/DAE Constrained Models
,” http://www.ima.umn.edu/talks/workshops/1-8.2003/biegler/IMA_Tutorial.pdf
26.
Lavalle
,
S.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
New York
.
27.
Barraquand
,
J.
, and
Ferbach
,
P.
,
1995
, “
Motion Planning With Uncertainty: The Information Space Approach
,”
Int. Conf. Robotics Autom.
,
2
, pp.
1341
1348
.10.1109/ROBOT.1995.525465
28.
Park
,
W.
,
Liu
,
Y.
,
Zhou
,
Y.
,
Moses
,
M.
, and
Chirikjian
,
G.
,
2008
, “
Kinematic State Estimation and Motion Planning for Stochastic Nonholonomic Systems Using the Exponential Map
,”
Robotica
,
26
(
04
), pp.
419
434
.10.1017/S0263574708004475
29.
Erdmann
,
M.
,
1984
, “
On Motion Planning With Uncertainty
,” Masters thesis, Massachusetts Institute of Technology, Boston, MA.
30.
Kewlani
,
G.
,
Ishigami
,
G.
, and
Iagnemma
,
K.
,
2009
, “
Stochastic Mobility-Based Path Planning in Uncertain Environments
,” IROS 2009. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
1183
1189
.
31.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
,
2011
, “
Motion Planning of Uncertain Fully-Actuated Dynamical Systems—An Inverse Dynamics Formulation
,”
ASME IDETC/CIE Conference
, Washington, DC, Aug. 28–30, pp.
355–360
.
32.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
,
2011
, “
Motion Planning of Uncertain Fully-Actuated Dynamical Systems—a Forward Dynamics Formulation
,”
ASME IDETC/CIE Conference
, Washington, DC.
33.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
,
2011
, “
Motion Planning of Uncertain Under-Actuated Dynamical Systems—a Hybrid Dynamics Formulation
,”
Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition
, Denver, CO, Nov. 11–17, pp.
729–736
.10.1115/IMECE2011-62694
34.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.10.2307/2371268
35.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
36.
Xiu
,
D.
,
2009
, “
Fast Numerical Methods for Stochastic Computations: A Review
,”
Commun. Comput. Phys.
,
5
(
2–4
), pp.
242
272
.
37.
Xiu
,
D.
, and
Hesthaven
,
J. S.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.10.1137/040615201
38.
Xiu
,
D.
,
2007
, “
Efficient Collocational Approach for Parametric Uncertainty Analysis
,”
Commun. Comput. Phys.
,
2
(
2
), pp.
293
309
.
39.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties. Part I: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
369
391
.10.1007/s11044-006-9007-5
40.
Cheng
,
H.
, and
Sandu
,
A.
,
2009
, “
Efficient Uncertainty Quantification With the Polynomial Chaos Method for Stiff Systems
,”
Math. Comput. Simul.
,
79
(
11
), pp.
3278
3295
.10.1016/j.matcom.2009.05.002
41.
Wan
,
X.
, and
Karniadakis
,
G.
,
2005
, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
(
2
), pp.
617
642
.10.1016/j.jcp.2005.03.023
42.
Wan
,
X.
, and
Karniadakis
,
G.
,
2006
, “
Adaptive Numerical Solutions of Stochastic Differential Equations
,”
Comput. Math. Appl.
, pp.
561
573
.
43.
Wan
,
X.
, and
Karniadakis
,
G.
,
2006
, “
Beyond Wiener–Askey Expansions: Handling Arbitrary Pdfs
,”
J. Sci. Comput.
,
27
(
1
), pp.
455
464
.10.1007/s10915-005-9038-8
44.
Wan
,
X.
, and
Karniadakis
,
G.
,
2007
, “
Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures
,”
SIAM J. Sci. Comput.
,
28
(
3
), pp.
901
928
.10.1137/050627630
45.
Foo
,
J.
,
Wan
,
X.
, and
Karniadakis
,
G.
,
2008
, “
The Multi-Element Probabilistic Collocation Method: Error Analysis and Simulation
,”
J. Comput. Phys
,
227
(
22
), pp.
9572
9595
.10.1016/j.jcp.2008.07.009
46.
Foo
,
J.
, and
Karniadakis
,
G. E.
,
2010
, “
Multi-Element Probabilistic Collocation Method in High Dimensions
,”
J. Comput. Phys.
,
229
(
5
), pp.
1536
1557
.10.1016/j.jcp.2009.10.043
47.
Sandu
,
C.
,
Sandu
,
A.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties. Part II: Numerical Applications
,”
Multibody Syst. Dyn.
,
15
(
3
), pp.
241
262
.10.1007/s11044-006-9008-4
48.
Cheng
,
H.
, and
Sandu
,
A.
,
2007
, “
Numerical Study of Uncertainty Quantification Techniques for Implicit Stiff Systems
,”
Proceedings of the 45th ACM Southeast Conference
, Winston-Salem, NC, pp.
367
372
.
49.
Cheng
,
H.
, and
Sandu
,
A.
,
2009
, “
Uncertainty Quantification in 3D Air Quality Models Using Polynomial Chaoses
,”
Environ. Model. Software
,
24
(
8
), pp.
917
925
.10.1016/j.envsoft.2008.12.005
50.
Cheng
,
H.
, and
Sandu
,
A.
,
2009
, “
Uncertainty Apportionment for Air Quality Forecast Models
,”
Proceedings of 24th Annual ACM Symposium on Applied Computing (SAC-2009), Computational Sciences Track
, Honolulu, HI, pp.
956
960
.
51.
Cheng
,
H.
, and
Sandu
,
A.
,
2010
, “
Collocation Least-Squares Polynomial Chaos Method
,”
Proceedings of the 2010 Spring Simulation Multiconference (SpringSim'10), High Performance Computing Symposium (HPC-2010)
, Orlando, FL, p.
80
.
52.
Blanchard
,
E.
,
2010
, “
Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems With Uncertain Parameters
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
53.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2007
, “
Parameter Estimation Method Using an Extended Kalman Filter
,”
Joint North America, Asia-Pacific ISTVS Conference
, Fairbanks, AK, pp.
23
26
.
54.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2009
, “
Parameter Estimation for Mechanical Systems Via an Explicit Representation of Uncertainty
,”
Eng. Comput.
,
26
(
5
), pp.
541
569
.10.1108/02644400910970185
55.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2010
, “
Polynomial Chaos-Based Parameter Estimation Methods Applied to a Vehicle System
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn.
,
224
(
1
), pp.
59
81
.10.1243/14644193JMBD204
56.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2010
, “
Polynomial Chaos Based Method for the LQR Problem With Uncertain Parameters in the Formulation
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, Canada, Aug. 15–18, pp.
315–324
.10.1115/DETC2010-28467
57.
Blanchard
,
E.
,
Sandu
,
C.
, and
Sandu
,
A.
,
2007
, “
A Polynomial-Chaos-Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems
,”
Proceedings of the ASME IDETC 2007, 9th International Conference on Advanced Vehicle and Tire Technology
, Las Vegas, NV, pp.
4
7
.10.1115/DETC2007-34600
58.
Blanchard
,
E.
,
Sandu
,
C.
, and
Sandu
,
A.
,
2009
, “
Comparison Between a Polynomial-Chaos-Based Bayesian Approach and a Polynomial-Chaos-Based EKF Approach for Parameter Estimation With Application to Vehicle Dynamics
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 11th International Conference on Advanced Vehicle and Tire Technology
, San Diego, CA, Aug. 30–Sept. 2,
ASME
Paper No. DETC2009-86402, pp.
893–904
.10.1115/DETC2009-86402
59.
Blanchard
,
E.
, and
Sandu
,
D.
,
2007
, “
A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems-Part 2: Applications to Vehicle Systems
,” Technical Report No. TR-07-39, Virginia Tech, Blacksburg, VA.
60.
Blanchard
,
E.
, and
Sandu
,
D.
,
2007
, “
A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems–Part 1: Theoretical Approach
,” Technical Report No. TR-07-38, Virginia Tech, Blacksburg, VA.
61.
Blanchard
,
E. D.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2010
, “
A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems
,”
ASME J. Dyn. Syst. Measure. Control
,
132
(
6
), p.
061404
.10.1115/1.4002481
62.
Pence
,
B.
,
Hays
,
J.
,
Fathy
,
H.
,
Sandu
,
C.
, and
Stein
,
J.
,
2013
, “
Vehicle Sprung Mass Estimation for Rough Terrain
,”
Int. J. Veh. Design
61
(
1
), pp.
3–36
.10.1504/IJVD.2013.050837
63.
Pence
,
B. L.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
,
2009
, “
A Base-Excitation Approach to Polynomial Chaos-Based Estimation of Sprung Mass for Off-Road Vehicles
,”
ASME Dynamic Systems and Control Conference
, Hollywood, CA, Oct. 12–14,
ASME
Paper No. DSCC2009-2641, pp.
857
864
.10.1115/DSCC2009-2641
64.
Pence
,
B. L.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
,
2010
, “
Recursive Bayesian Parameter Estimation Using Polynomial Chaos Theory
,”
Automatica
,
47
(
11
), pp.
2420–2424.
10.1016/j.automatica.2011.08.014
65.
Pence
,
B. L.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
,
2010
, “
An Integrated Cost/Maximum Likelihood Approach to Recursive Polynomial Chaos Parameter Estimation
,” American Control Conference (ACC), June 30–July 2, pp.
2144–2151
.
66.
Southward
,
S.
,
2007
, “
Real-Time Parameter ID Using Polynomial Chaos Expansions
,”
ASME Conf. Proc. 43033
, pp.
1167
1173
.
67.
Shimp
III,
S.
,
2008
, “
Vehicle Sprung Mass Parameter Estimation Using an Adaptive Polynomial-Chaos Method
,” Masters thesis, Virginia Tech, Blacksburg, VA.
68.
Marzouk
,
Y.
, and
Xiu
,
D.
,
2009
, “
A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems
,”
Commun. Comput. Phys.
,
6
, pp.
826
847
.10.4208/cicp.2009.v6.p826
69.
Marzouk
,
Y. M.
,
Najm
,
H. N.
, and
Rahn
,
L. A.
,
2007
, “
Stochastic Spectral Methods for Efficient Bayesian Solution of Inverse Problems
,”
J. Comput. Phys.
,
224
(
2
), pp.
560
586
.10.1016/j.jcp.2006.10.010
70.
Price
,
D.
,
2008
, “
Estimation of Uncertain Vehicle Center of Gravity Using Polynomial Chaos Expansions
,” Masters thesis, Virginia Tech, Blackburg, VA.
71.
Smith
,
A.
,
Monti
,
A.
, and
Ponci
,
F.
,
2007
, “
Indirect Measurements Via a Polynomial Chaos Observer
,”
IEEE Trans. Instrum. Measure.
,
56
(
3
), pp.
743
752
.10.1109/TIM.2007.894914
72.
Li
,
J.
, and
Xiu
,
D.
,
2009
, “
A Generalized Polynomial Chaos Based Ensemble Kalman Filter With High Accuracy
,”
J. Comput. Phys.
,
228
(
15
), pp.
5454
5469
.10.1016/j.jcp.2009.04.029
73.
Saad
,
G.
,
Ghanem
,
R.
, and
Masri
,
S.
,
2007
, “
Robust System Identification of Strongly Non-Linear Dynamics Using a Polynomial Chaos Based Sequential Data Assimilation Technique
,”
6
, pp.
6005
6013
.
74.
Templeton
,
B.
,
2009
, “
A Polynomial Chaos Approach to Control Design
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
75.
Smith
,
A.
,
Monti
,
A.
, and
Ponci
,
F.
,
2006
, “
Robust Controller Using Polynomial Chaos Theory
,”
Industry Applications Conference
, Tampa, FL, Oct. 8–12, pp.
2511
2517
.
76.
Prempraneerach
,
P.
,
Hover
,
F.
,
Triantafyllou
,
M.
, and
Karniadakis
,
G.
,
2010
, “
Uncertainty Quantification in Simulations of Power Systems: Multi-Element Polynomial Chaos Methods
,”
Reliability Eng. Syst. Safety
,
95
, pp.
632
646
.10.1016/j.ress.2010.01.012
77.
Kewlani
,
G.
, and
Iagnemma
,
K.
,
2009
, “
A Multi-Element Generalized Polynomial Chaos Approach to Analysis of Mobile Robot Dynamics Under Uncertainty
,” pp.
1177
1182
.
78.
Greenwood
,
D.
,
2003
,
Advanced Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
79.
Murray
,
R.
,
Li
,
Z.
,
Sastry
,
S.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
.
80.
Nikravesh
,
P. E.
,
2004
,
Product Engineering, an Overview of Several Formulations for Multibody Dynamics
,
Springer
,
Berlin
.
81.
Haug
,
E. J.
,
1989
,
Computer Aided Kinematics and Dynamics of Mechanical Systems
. Vol.
1
:
Basic Methods, Allyn & Bacon
,
Boston, MA
.
82.
Piegl
,
L. A.
, and
Tiller
,
W.
,
1997
,
The Nurbs Book
,
Springer
,
Berlin
.
You do not currently have access to this content.