A simple model of earthquake nucleation that may account for the onset of chaotic dynamics is proposed and analyzed. It represents a generalization of the Burridge–Knopoff single-block model with Dieterich–Ruina's rate- and state-dependent friction law. It is demonstrated that deterministic chaos may emerge when some of the parameters are assumed to undergo small oscillations about their equilibrium values. Implementing the standard numerical methods from the theory of dynamical systems, the analysis is carried out for the cases having one or two periodically variable parameters, such that the appropriate bifurcation diagrams, phase portraits, power spectra, and the Lyapunov exponents are obtained. The results of analysis indicate two different scenarios to chaos. On one side, the Ruelle–Takens–Newhouse route to chaos is observed for the cases of limit amplitude perturbations. On the other side, when the angular frequency is assumed constant for the value near the periodic motion of the block in an unperturbed case, variation of oscillation amplitudes probably gives rise to global bifurcations, with immediate occurrence of chaotic behavior. Further analysis shows that chaotic behavior emerges only for small oscillation frequencies and higher perturbation amplitudes when two perturbed parameters are brought into play. If higher oscillation frequencies are assumed, no bifurcation occurs, and the system under study exhibits only the periodic motion. In contrast to the previous research, the onset of chaos is observed for much smaller values of the stress ratio parameter. In other words, even the relatively small perturbations of the control parameters could lead to deterministic chaos and, thus, to instabilities and earthquakes.

References

References
1.
Ohnaka
,
M
.,
1993
, “
Critical Size of the Nucleation Zone of Earthquake Rupture Inferred From Immediate Foreshock Activity
,”
J. Phys. Earth
,
41
, pp.
45
56
.10.4294/jpe1952.41.45
2.
Ellsworth
,
W. L.
, and
Beroza
,
G. C.
,
1995
, “
Seismic Evidence for an Earthquake Nucleation Phase
,”
Science
,
268
, pp.
851
855
.10.1126/science.268.5212.851
3.
Dodge
,
D. A.
,
Beroza
,
G. C.
, and
Ellsworth
,
W. L.
,
1996
, “
Detailed Observations of California Foreshock Sequences: Implications for the Earthquake Initiation Process
,”
J. Geophys. Res.
,
101
, pp.
22,371
22,392
.10.1029/96JB02269
4.
Abercrombie
,
R.
, and
Mori
,
J.
,
1994
, “
Local Observations of the Onset of a Large Earthquake: 28 June 1992 Landers, California
,”
B. Seismol. Soc. Am.
84
, pp.
725
734
.
5.
Mori
,
J.
, and
Kanamori
,
H.
,
1996
, “
Initial Rupture of Earthquakes in the 1995 Ridgecrest, California Sequence
,”
Geophys. Res. Lett.
,
23
, pp.
2340
2437
.
6.
Geller
,
R. J.
,
1976
, “
Body Force Equivalents for Stress-Drop Seismic Sources
,”
B. Seismol. Soc. Am.
,
66
, pp.
1801
1804
.
7.
Ben-Menahem
,
A.
, and
Singh
,
S. J.
,
2000
,
Seismic Waves and Sources
,
Springer-Verlag
,
New York
.
8.
Aki
,
K.
, and
Richards
,
P. G.
,
2002
,
Quantitative Seismology, Theory and Methods
,
Freeman
,
San Francisco
.
9.
Gibowicz
,
S. J.
, and
Kijko
,
A.
,
1994
,
An Introduction to Mining Seismology
,
Academic Press
,
Salt Lake City, UT
.
10.
Brace
,
W.
, and
Byerlee
,
J.
,
1966
, “
Stick-Slip as a Mechanism for Earthquakes
,”
Science
,
153
(
3739
), pp.
990
992
.10.1126/science.153.3739.990
11.
Burridge
,
R.
, and
Knopoff
,
L.
,
1967
, “
Model and Theoretical Seismicity
,”
B. Seismol. Soc. Am.
57
, pp.
341
371
.
12.
Carlson
,
J. M.
, and
Langer
,
J. S.
,
1989
, “
Mechanical Model of an Earthquake Fault
,”
Phys. Rev. A
,
40
, pp.
6470
6484
.10.1103/PhysRevA.40.6470
13.
Elmer
,
F.-J.
,
1997
, “
Self-Organized Criticality With Complex Scaling Exponents in the Train Model
,”
Phys. Rev. E
,
56
, pp.
R6225
R6228
.10.1103/PhysRevE.56.R6225
14.
Galvanetto
,
U
.,
2002
, “
Some Remarks on the Two-Block Symmetric Burridge–Knopoff Model
,”
Phys. Lett. A
,
293
, pp.
251
259
.10.1016/S0375-9601(01)00864-7
15.
Popp
,
K.
, and
Stelter
,
P.
,
1990
, “
Stick-Slip Vibrations and Chaos
,”
Phil. Trans. R. Soc. Lond. A
,
332
, pp.
89
105
.10.1098/rsta.1990.0102
16.
Galvanetto
,
U
.,
2001
, “
Some Discontinuous Bifurcations in a Two-Block Stick-Slip System
,”
J. Sound Vib.
,
248
, pp.
653
669
.10.1006/jsvi.2001.3809
17.
Ranjith
,
K.
, and
Rice
,
J. R.
,
1999
, “
Stability of Quasi-Static Slip in a Single Degree of Freedom Elastic System With Rate and State Dependent Friction
,”
J. Mech. Phys. Solids
,
47
, pp.
1207
1218
.10.1016/S0022-5096(98)00113-6
18.
Scholz
,
C. H.
,
2002
,
The Mechanics of Earthquakes and Faulting
,
Cambridge University Press
,
Cambridge
.
19.
Montagne
,
R.
, and
Vasconcelos
,
G. L.
,
2004
, “
Complex Dynamics in a One-Block Model for Earthquakes
,”
Physica A
,
342
, pp.
178
185
.10.1016/j.physa.2004.04.076
20.
Erickson
,
B.
,
Birnir
,
B.
, and
Lavallee
,
D.
,
2008
, “
A Model for Aperiodicity in Earthquakes
,”
Nonlinear Proc. Geoph.
,
15
, pp.
1
12
.10.5194/npg-15-1-2008
21.
Pomeau
,
Y.
, and
Le Berre
,
M.
,
2011
, “
Critical Speed-Up vs Critical Slow-Down: A New Kind of Relaxation Oscillation With Application to Stick-Slip Phenomena
,” arXiv: 1107.3331v1.
22.
Ruina
,
A. L.
,
1983
, “
Slip Instability and State Variable Friction Laws
,”
J. Geophys. Res.
,
88
, pp.
10359
10370
.10.1029/JB088iB12p10359
23.
Tullis
,
T. E.
, and
Weeks
,
J. D.
,
1986
, “
Constitutive Behavior and Stability of Frictional Sliding in Granite
,”
Pure Appl. Geophys.
,
124
, pp.
383
414
.10.1007/BF00877209
24.
Dieterich
,
J. H.
,
1979
, “
Modeling of Rock Friction, 1. Experimental Results and Constitutive Equations
,”
J. Geophys. Res.
,
84
, pp.
2161
2168
.10.1029/JB084iB05p02161
25.
Madariaga
,
R.
, and
Olsen
,
K. B.
,
2002
, “
Earthquake Dynamics
,”
International Handbook of Earthquake and Engineering Seismology, Part A.
,
W. H. K.
Lee
,
H.
Kanamori
,
P. C.
Jennings
, and
C.
Kisslinger
, eds.,
Academic Press
,
London
, pp.
176
194
.
26.
Kawamura
,
H.
,
Hatano
,
T.
,
Kato
,
N.
,
Biswas
,
S.
, and
Chakrabarti
,
B. K.
,
2012
,
Statistical Physics of Fracture, Friction and Earthquake
,
Rev. Mod. Phys.
,
84
, pp.
839
884
.10.1103/RevModPhys.84.839
27.
Kostić
,
S.
,
Franović
,
I.
,
Todorović
,
K.
, and
Vasović
,
N.
,
2013
, “
Friction Memory Effect in Complex Dynamics of Earthquake Model
,”
Nonlinear Dynam.
,
73
(
3
), pp.
1933
1943
.10.1007/s11071-013-0914-8
28.
Gomberg
,
J.
,
Blanpied
,
M.
, and
Beeler
,
N.
,
1997
, “
Transient Triggering of Near and Distant Earthquakes
,”
B. Seismol. Soc. Am.
,
87
, pp.
294
309
.
29.
Perfettini
,
H.
,
Schmittbuhl
,
J.
, and
Cochard
,
A.
,
2003
, “
Shear and Normal Load Perturbations on a Two-Dimensional Continuous Fault: 2. Dynamic Triggering
,”
J. Geophys. Res.
108
(
2409
), pp.
1
16
.
30.
Burić
,
N.
, and
Vasović
,
N.
,
1999
, “
A Simple Model of the Chaotic Immune Response
,”
Chaos Soliton. Fract.
10
, pp.
1185
1192
.10.1016/S0960-0779(98)00102-7
31.
Dieterich
,
J. H.
, and
Kilgore
,
B. D.
,
1994
, “
Direct Observation of Frictional Contacts: New Insights for State Dependent properties
,”
Pure Appl. Geophys.
,
143
, pp.
283
302
.10.1007/BF00874332
32.
Rice
,
J. R.
,
Lapusta
,
N.
, and
Ranjith
,
K.
,
2001
, “
Rate and State Dependent Friction and the Stability of Sliding Between Elastically Deformable Solids
,”
J. Mech. Phys. Solids
,
49
, pp.
1865
1898
.10.1016/S0022-5096(01)00042-4
33.
Gomberg
,
J.
,
Bodin
,
P.
,
Savage
,
W.
, and
Jackson
,
M. E.
,
1995
, “
Landslide Faults and Tectonic Faults, Analogs?—The Slumgullion Earthflow, Colorado
,”
Geology
,
23
, pp.
41
44
.10.1130/0091-7613(1995)023<0041:LFATFA>2.3.CO;2
34.
Perfettini
,
H.
,
Schmittbuhl
,
J.
,
Rice
,
J. R.
, and
Cocco
,
M. J.
,
2001
, “
Frictional Response Induced by Time-Dependent Fluctuations of the Normal Loading
,”
Geophys. Res.
,
106
, pp.
13455
13472
.10.1029/2000JB900366
35.
Gomberg
,
J.
,
Beeler
,
N. M.
,
Blanpied
,
M. L.
, and
Bodin
,
P.
,
1998
, “
Earthquake Triggering by Transient and Static Deformations
,”
J. Geophys. Res.
,
103
, pp.
24411
24426
.10.1029/98JB01125
36.
Parsons
,
T
.,
2005
, “
A Hypothesis for Delayed Dynamic Earthquake Triggering
,”
Geophys. Res. Lett.
,
32
(
4
), pp.
1
4
.
37.
Wolf
,
A.
,
Swift
,
J.
,
Swinney
,
H.
, and
Vastano
,
J.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
,
16
, pp.
285
317
.10.1016/0167-2789(85)90011-9
38.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
De Luca
,
C. J.
,
1993
, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Physica D
,
65
, pp.
117
134
.10.1016/0167-2789(93)90009-P
39.
Erickson
,
B. A.
,
Birnir
,
B.
, and
Lavallée
,
D.
,
2011
, “
Periodicity, Chaos and Localization in a Burridge–Knopoff Model of an Earthquake With Rate-and-State Friction
,”
Geophys. J. Int.
,
187
, pp.
178
198
.10.1111/j.1365-246X.2011.05123.x
You do not currently have access to this content.