This work investigates the mechanical behavior of a clamped-clamped microbeam modeled within the framework of the strain-gradient elasticity theory. The governing equation of motion gives proper account of both the effect of the nonlinear midplane stretching and of an applied axial load. An electric-voltage difference, introducing into the model a further source of nonlinearity, is considered, including also a correction term for fringing field effects. The electric force acting on the microbeam is rearranged by means of the Chebyshev method, verifying the accuracy of the proposed approximation. The results show that a uniform error on the whole domain can be achieved. The static solution is obtained by a numerical differential quadrature method. The paper looks into the variation of the maximal deflection of the microbeam with respect to several parameters. Study of the pull-in limit on the high-order material parameters introduced by the nonclassical approach and a comparison with respect to the classical beam theory are also carried out. The numerical simulation indicates that the static response is larger, affected by the use of a nonclassical theory near the pull-in instability regime. The dynamical problem is, finally, analyzed, deriving the multi degree-of-freedom problem through a Galerkin-based approach. The study on the single degree-of-freedom model enables us to note the large influence of the nonlinear terms.

References

References
1.
Lin
,
Y.
,
Li
,
W.-C.
,
Ren
,
Z.
, and
Nguyen
,
C.-C.
,
2008
, “
A Resonance Dynamical Approach to Faster, More Reliable Micromechanical Switches
,”
2008 IEEE International Frequency Control Symposium
, pp.
640
645
.
2.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
,
Moehlis
,
J.
,
DeMartini
,
B. E.
, and
Zhang
,
W.
,
2006
, “
Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators
,”
J. Sound Vib.
,
296
(
45
), pp.
797
829
.10.1016/j.jsv.2006.03.009
3.
Luo
,
H.
,
Zhang
,
G.
,
Carley
,
L.
, and
Fedder
,
G.
,
2002
, “
A Post-CMOS Micromachined Lateral Accelerometer
,”
J. Microelectromech. Syst.
,
11
(
3
), pp.
188
195
.10.1109/JMEMS.2002.1007397
4.
Nguyen
,
C.-C.
,
2004
, “
Vibrating RF MEMS for Next Generation Wireless Applications
,”
Proceedings of the IEEE 2004 Custom Integrated Circuits Conference
, pp.
257
264
.
5.
Bashir
,
R.
,
2004
, “
Biomems: State-of-the-Art in Detection, Opportunities and Prospects
,”
Adv. Drug Delivery Rev.
,
56
(
11
), pp.
1565
1586
.10.1016/j.addr.2004.03.002
6.
Rhoads
,
J.
,
Shaw
,
S.
, and
Turner
,
K.
,
2010
, “
Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
3
), p.
034001
.10.1115/1.4001333
7.
Legtenberg
,
R.
, and
Tilmans
,
H.
,
1994
, “
Electrostatically Driven Vacuum-Encapsulated Polysilicon Resonators Part I. Design and Fabrication
,”
Sens. Actuators, A
,
45
(
1
), pp.
57
66
.10.1016/0924-4247(94)00812-4
8.
Beeby
,
S.
,
Esell
,
G.
,
Kraft
,
M.
, and
White
,
N.
,
2004
,
MEMS Mechanical Sensor
,
Artech House
,
Norwood, MA
.
9.
Batra
,
R.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2006
, “
Electromechanical Model of Electrically Actuated Narrow Microbeams
,”
J. Microelectromech. Syst.
,
15
(
5
), pp.
1175
1189
.10.1109/JMEMS.2006.880204
10.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics (Microsystems)
, Vol.
20
,
Springer
,
New York
.
11.
Abdel Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2002
, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
759
766
.10.1088/0960-1317/12/6/306
12.
Najar
,
F.
,
Choura
,
S.
,
El-Borgi
,
S.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2005
, “
Modeling and Design of Variable-Geometry Electrostatic Microactuators
,”
J. Micromech. and Microeng.
,
15
(
3
), pp.
419
429
.10.1088/0960-1317/15/3/001
13.
Kahrobaiyan
,
M. H.
,
Asghari
,
M.
,
Rahaeifard
,
M.
, and
Ahmadian
,
M. T.
,
2011
, “
A Nonlinear Strain Gradient Beam Formulation
,”
Int. J. Eng. Sci.
,
49
, pp.
1256
1267
.10.1016/j.ijengsci.2011.01.006
14.
Yang
,
F.
,
Chong
,
A.
,
Lam
,
D.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
.10.1016/S0020-7683(02)00152-X
15.
Fleck
,
N.
, and
Hutchinson
,
J.
,
1997
,
Strain Gradient Plasticity (Advances in Applied Mechanics)
, Vol.
33
,
Elsevier
,
New York
, pp.
295
361
.
16.
Mindlin
,
R.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
417
438
.10.1016/0020-7683(65)90006-5
17.
Lam
,
D.
,
Yang
,
F.
,
Chong
,
A.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.10.1016/S0022-5096(03)00053-X
18.
Vyasarayani
,
C. P.
,
Abdel Rahman
,
E. M.
,
McPhee
,
J.
, and
Birkett
,
S.
,
2011
, “
Modeling MEMS Resonators Past Pull-In
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031008
.10.1115/1.4002835
19.
Xie
,
W. C.
,
Lee
,
H. P.
, and
Lim
,
S. P.
,
2003
, “
Nonlinear Dynamic Analysis of MEMS Switches by Nonlinear Modal Analysis
,”
Nonlinear Dyn.
,
31
, pp.
243
256
.10.1023/A:1022914020076
20.
Zhang
,
W.-M.
, and
Meng
,
G.
,
2007
, “
Nonlinear Dynamic Analysis of Electrostatically Actuated Resonant MEMS Sensors Under Parametric Excitation
,”
IEEE Sens. J.
,
7
(
3
), pp.
370
380
.10.1109/JSEN.2006.890158
21.
Younis
,
M.
,
Abdel-Rahman
,
E.
, and
Nayfeh
,
A.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.10.1109/JMEMS.2003.818069
22.
Moghimi Zand
,
M.
,
Ahmadian
,
M.
, and
Rashidian
,
B.
,
2009
, “
Semi-analytic Solutions to Nonlinear Vibrations of Microbeams Under Suddenly Applied Voltages
,”
J. Sound Vib.
,
325
(
12
), pp.
382
396
.10.1016/j.jsv.2009.03.023
23.
Mestrom
,
R.
,
Fey
,
R.
,
van Beek
,
J.
,
Phan
,
K.
, and
Nijmeijer
,
H.
,
2008
, “
Modelling the Dynamics of a MEMS Resonator: Simulations and Experiments
,”
Sens. Actuators
, A,
142
(
1
), pp.
306
315
.10.1016/j.sna.2007.04.025
24.
Ruzziconi
,
L.
,
Younis
,
M.
, and
Lenci
,
S.
,
2013
, “
An Efficient Reduced-Order Model to Investigate the Behavior of an Imperfect Microbeam Under Axial Load and Electric Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011014
.10.1115/1.4006838
25.
Palmer
,
H. B.
,
1937
, “
The Capacitance of a Parallel-Plate Capacitor by the Schwartz-Christoffel Transformation
,”
Trans. Am. Inst. Electr. Eng.
,
56
(
3
), pp.
363
366
.10.1109/T-AIEE.1937.5057547
26.
Sadeghian
,
H.
,
Rezazadeh
,
G.
, and
Osterberg
,
P.
,
2007
, “
Application of the Generalized Differential Quadrature Method to the Study of Pull-In Phenomena of MEMS Switches
,”
J. Microelectromech. Syst.
,
16
(
6
), pp.
1334
1340
.10.1109/JMEMS.2007.909237
27.
Bellman
,
R.
,
Kashef
,
B.
, and
Casti
,
J.
,
1972
, “
Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations 1
,”
J. Comput. Phys.
,
10
, pp.
40
52
.10.1016/0021-9991(72)90089-7
28.
Zhao
,
J.
,
Zhou
,
S.
,
Wang
,
B.
, and
Wang
,
X.
,
2012
, “
Nonlinear Microbeam Model Based on Strain Gradient Theory
,”
Appl. Math. Model.
,
36
(
6
), pp.
2674
2686
.10.1016/j.apm.2011.09.051
29.
Marques
,
F. A.
,
Castello
,
R. C.
, and
Shkel
,
A. M.
,
2005
, “
Modelling the Electrostatic Actuation of MEMS: State of the Art 2005
,” Polytechnic University of Catalugna Technical Report.
30.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2004
,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
New York
.
31.
Park
,
S. K.
, and
Gao
,
X.-L.
,
2006
, “
Bernoulli - Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2355
2359
.10.1088/0960-1317/16/11/015
32.
Akgoz
,
B.
, and
Civalek
,
O.
,
2011
, “
Strain Gradient Elasticity and Modified Couple Stress Models for Buckling Analysis of Axially Loaded Micro-scaled Beams
,”
Int. J. Eng. Sci.
,
49
(
11
), pp.
1268
1280
.10.1016/j.ijengsci.2010.12.009
33.
Rega
,
G.
,
2004
, “
Nonlinear Vibrations of Suspended Cables - Part 1: Modeling and Analysis
,”
Appl. Mech. Rev.
,
57
(
6
), pp.
443
478
.10.1115/1.1777224
34.
Younis
,
M.
, and
Nayfeh
,
A.
,
2003
, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
,
31
, pp.
91
117
.10.1023/A:1022103118330
35.
Qian
,
Y.
,
Ren
,
D.
,
Lai
,
S.
, and
Chen
,
S.
,
2012
, “
Analytical Approximations to Nonlinear Vibration of an Electrostatically Actuated Microbeam
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
4
), pp.
1947
1955
.10.1016/j.cnsns.2011.09.018
You do not currently have access to this content.