A system with fractional damping and a viscoelastic term subject to narrow-band noise is considered in this paper. Based on the revisit of the Lindstedt–Poincaré (LP) and multiple scales method, we present a new procedure to obtain the second-order approximate analytical solution, and then the frequency–amplitude response equations in the deterministic case and the first- and second-order steady-state moments in the stochastic case are derived theoretically. Numerical simulation is applied to verify the effectiveness of the proposed method, which shows good agreement with the analytical results. Specially, we find that the new method is valid for strongly nonlinear systems. In addition, the influences of fractional order and the viscoelastic parameter on the system are explored, and the results indicate that the steady-state amplitude will increase at a fixed point with the increase of fractional order or viscoelastic parameter. At last, stochastic jump is investigated via the received Fokker–Planck–Kolmogorov (FPK) equation to compute the stationary solution of probability density functions with its shape changing from one peak to two peaks with the increase of noise intensity, and the phenomena of stochastic jump is consistent with the solution of frequency–amplitude response equations.

References

References
1.
Samali
,
B.
,
1995
, “
Use of Viscoelastic Dampers in Reducing Wind- and Earthquake-Induced Motion of Building
,”
Eng. Struct.
,
17
(
9
), pp.
639
654
.10.1016/0141-0296(95)00034-5
2.
Rao
,
M. D.
,
2003
, “
Recent Applications of Viscoelastic Damping for Noise Control in Automobiles and Commercial Airplanes
,”
J. Sound Vib.
,
262
(
3
), pp.
457
474
.10.1016/S0022-460X(03)00106-8
3.
Wang
,
X.
,
Jonathan
,
A. S.
, and
Mark
,
E. R.
,
2013
, “
A Quantitative Comparison of Soft Tissue Compressive Viscoelastic Model Accuracy
,”
J. Mech. Behav. Biomed. Mater.
,
20
, pp.
126
136
.10.1016/j.jmbbm.2013.01.007
4.
Allam
,
M. N. M.
, and
Zenkour
,
A. M.
,
2003
, “
Bending Response of a Fiber-Reinforced Viscoelastic Arched Bridge Model
,”
Appl. Math. Model.
27
, pp.
233
248
.
10.1016/S0307-904X(02)00123-3
5.
Pankaj
,
W.
, and
Anindya
,
C.
,
2003
, “
Averaging for Oscillations With Light Fractional Order Damping
,”
ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, IL.
6.
Marek
,
B.
,
Grzegorz
,
L.
, and
Arkadiusz
,
S.
,
2007
, “
Vibration of the Duffing Oscillator: Effect of Fractional Damping
,”
Shock Vib.
,
14
, pp.
29
36
. Available at http://iospress.metapress.com/content/29y56dkf70cxmft0/fulltext.pdf
7.
Chen
,
L. C.
, and
Zhu
,
W. Q.
,
2011
, “
Stochastic Jump and Bifurcation of Duffing Oscillator With Fractional Derivative Damping Under Combined Harmonic and White Noise Excitations
,”
Int. J. Nonlinear Mech.
,
46
, pp.
1324
1329
.10.1016/j.ijnonlinmec.2011.07.002
8.
Huang
,
Z. L.
, and
Jin
,
Y. F.
,
2009
, “
Response and Stability of a SDOF Strongly Nonlinear Stochastic System With Light Damping Modeled by a Fractional Derivative
,”
J. Sound Vib.
,
319
, pp.
1121
1135
.10.1016/j.jsv.2008.06.026
9.
Tenreiro
,
M.
, and
Alexandra
,
G.
,
2008
, “
Fractional Dynamics: A Statistical Perspective
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), pp.
43
51
. Available at http://computationalnonlinear.asmedigitalcollection.asme.org/data/Journals/JCNDDM/24916/021201_1.pdf
10.
Bagley
,
R. L.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelastic
,”
J. Rheol.
,
27
, pp.
201
210
.10.1122/1.549724
11.
Agrawal
,
O. P.
,
2004
, “
Application of Fractional Derivative in Thermal Analysis of Disk Brakes
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
191
206
.10.1007/s11071-004-3755-7
12.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
, pp.
3
22
.10.1023/A:1016592219341
13.
Diethelm
,
K.
,
Ford
,
N. J.
,
Freed
,
A. D.
, and
Luchko
,
Y.
,
2005
, “
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
,”
Comput. Method Appl. M.
,
194
, pp.
743
773
.10.1016/j.cma.2004.06.006
14.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2009
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
60
, pp.
13
64
. Available at http://appliedmechanicsreviews.asmedigitalcollection.asme.org/data/Journals/AMREAD/25921/010801_1.pdf
15.
Deü
,
J.-F.
, and
Matignon
,
D.
,
2010
, “
Simulation of Fractionally Damped Mechanical Systems by Means of a Newmark-Diffusive Scheme
,”
Comput. Math. Appl.
,
59
, pp.
1745
1753
.10.1016/j.camwa.2009.08.067
16.
Shen
,
Y. J.
,
Yang
,
S. P.
,
Xing
,
H. J.
, and
Gao
,
G. S.
,
2012
, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
Commun. Nonlinear Sci.
,
17
, pp.
3092
3100
.10.1016/j.cnsns.2011.11.024
17.
Padovan
,
J.
, and
Sawicki
,
J. T.
,
1998
, “
Nonlinear Vibration of Fractionally Damped Systems
,”
Nonlinear Dyn.
,
16
, pp.
321
336
.10.1023/A:1008289024058
18.
Leung
,
A. Y. T.
, and
Guo
,
Z. J.
,
2011
, “
Forward Residue Harmonic Balance for Autonomous and Non-Autonomous System With Fractional Derivative Damping
,”
Commun. Nonlinear Sci.
,
16
, pp.
2169
2183
.10.1016/j.cnsns.2010.08.027
19.
Li
,
P.
,
Yang
,
Y. R.
,
Xu
,
W.
, and
Chen
,
G.
,
2013
, “
Stochastic Analysis of a Nonlinear Forced Panel in Subsonic Flow With Random Pressure Fluctuations
,”
ASME J. Appl. Mech.
,
80
, p.
041005
.10.1115/1.4007819
20.
Abdulaziz
,
O.
,
Hashim
, I
.
, and
Momani
,
S.
,
2008
, “
Solving System of Fractional Differential Equations by Homotopy-Perturbation Method
,”
Phys. Lett. A
,
372
, pp.
451
459
.10.1016/j.physleta.2007.07.059
21.
Ray
,
S. S.
,
Chaudhuri
,
K. S.
, and
Bera
,
R. K.
,
2006
, “
Analytical Approximate Solution of Nonlinear Dynamic System Containing Fractional Derivative by Modified Decomposition Method
,”
Appl. Math. Comput.
182
,
544
552
.10.1016/j.amc.2006.04.016
22.
Zhu
,
W. Q.
, and
Cai
,
G. Q.
,
2011
, “
Random Vibration of Viscoelastic System Under Broad-Band Excitations
,”
Int. J. Nonlinear Mech.
,
46
, pp.
720
726
.10.1016/j.ijnonlinmec.2011.02.004
23.
Liu
,
D.
,
Xu
,
W.
, and
Xu
,
Y.
,
2012
, “
Dynamic Responses of Axially Moving Viscoelastic Beam Under a Randomly Disordered Periodic Excitation
,”
J. Sound Vib.
,
331
,
4045
4056
.10.1016/j.jsv.2012.04.005
24.
Rüdinger
,
F.
,
2006
, “
Tuned Mass Damper With Fractional Derivative Damping
,”
Eng. Struct.
,
28
, pp.
1774
1779
.10.1016/j.engstruct.2006.01.006
25.
Leung
,
A. Y. T.
,
Yang
,
H. X.
,
Zhu
,
P.
, and
Guo
,
Z. J.
,
2013
, “
Steady State Response of Fractional Damped Nonlinear Viscoelastic Arches by Residue Harmonic Homotopy
,”
Comput. Struct.
,
121
, pp.
10
21
.10.1016/j.compstruc.2013.02.011
26.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
,
John Wiley and Sons
,
New York
.
27.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
Amsterdam
.
28.
Wedig
,
W. V.
,
1990
, “
Invariant Measures and Lyapunov Exponents for Generalized Parameter Fluctuations
,”
Struct. Saf.
,
8
, pp.
13
25
.10.1016/0167-4730(90)90028-N
29.
Nayfeh
,
A. H.
,
1981
,
Introduction to Perturbation Techniques
,
John Wiley and Sons
,
New York
.
30.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2012
, “
On Fallacies in the Decision Between the Caputo and Riemann-Liouville Fractional Derivative for the Analysis of the Dynamic Response of a Nonlinear Viscoelastic Oscillator
,”
Mech. Res. Commun.
,
45
, pp.
22
27
.10.1016/j.mechrescom.2012.07.001
You do not currently have access to this content.