This paper focuses on the development of nonlinear reduced order modeling techniques for the prediction of the response of complex structures exhibiting “large” deformations, i.e., a geometrically nonlinear behavior, which are nonintrusive, i.e., the structure is originally modeled within a commercial finite element code. The present investigation builds on a general methodology successfully validated in recent years on simpler beam and plate structures by: (i) developing a novel identification strategy of the reduced order model parameters that enables the consideration of the large number of modes (>50 say) that would be needed for complex structures, and (ii) extending a step-by-step strategy for the selection of the basis functions used to represent accurately the displacement field. The above novel developments are successfully validated on the nonlinear static response of a nine-bay panel structure modeled with 96,000 degrees of freedom within Nastran.

References

References
1.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.10.1016/j.jsv.2012.10.017
2.
McEwan
,
M. I.
,
Wright
,
J. R.
,
Cooper
,
J. E.
, and
Leung
,
A. Y. T.
,
2001
, “
A Combined Modal/Finite Element Analysis Technique for the Dynamic Response of a Nonlinear Beam to Harmonic Excitation
,”
J. Sound Vib.
,
243
, pp.
601
624
.10.1006/jsvi.2000.3434
3.
Hollkamp
,
J. J.
,
Gordon
,
R. W.
, and
Spottswood
,
S. M.
,
2005
, “
Nonlinear Modal Models for Sonic Fatigue Response Prediction: A Comparison of Methods
,”
J. Sound Vib.
,
284
, pp.
1145
1163
.10.1016/j.jsv.2004.08.036
4.
Mignolet
,
M. P.
,
Radu
,
A. G.
, and
Gao
,
X.
,
2003
, “
Validation of Reduced Order Modeling for the Prediction of the Response and Fatigue Life of Panels Subjected to Thermo-Acoustic Effects
,”
Proceedings of the 8th International Conference on Recent Advances in Structural Dynamics
,
Southampton, UK
, Jul. 14–16.
5.
Radu
,
A.
,
Yang
,
B.
,
Kim
,
K.
, and
Mignolet
,
M. P.
,
2004
, “
Prediction of the Dynamic Response and Fatigue Life of Panels Subjected to Thermo-Acoustic Loading
,”
Proceedings of the 45th Structures, Structural Dynamics, and Materials Conference
,
Palm Springs, CA
, Apr. 19–22, Paper AIAA-2004-1557.
6.
Hollkamp
,
J. J.
, and
Gordon
,
R. W.
,
2008
, “
Reduced-Order Models for Nonlinear Response Prediction: Implicit Condensation and Expansion
,”
J. Sound Vib.
,
318
, pp.
1139
1153
.10.1016/j.jsv.2008.04.035
7.
Przekop
,
A.
, and
Rizzi
,
S. A.
,
2006
, “
A Reduced Order Method for Predicting High Cycle Fatigue of Nonlinear Structures
,”
Comput. Struct.
,
84
(
24–25
), pp.
1606
1618
.10.1016/j.compstruc.2006.01.015
8.
Kim
,
K.
,
Radu
,
A. G.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2013
, “
Nonlinear Reduced Order Modeling of Isotropic and Functionally Graded Plates
,”
Int. J. Non-Linear Mech.
,
49
, pp.
100
110
.10.1016/j.ijnonlinmec.2012.07.008
9.
Kim
,
K.
,
Khanna
,
V.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2009
, “
Nonlinear Reduced Order Modeling of Flat Cantilevered Structures
,”
Proceedings of the 50th Structures, Structural Dynamics, and Materials Conference
,
Palm Springs, CA
, May 4–7, AIAA Paper AIAA-2009-2492.
10.
Przekop
,
A.
, and
Rizzi
,
S. A.
,
2006
, “
Nonlinear Reduced Order Random Response Analysis of Structures With Shallow Curvature
,”
AIAA J.
,
44
(
8
), pp.
1767
1778
.10.2514/1.18868
11.
Gordon
,
R. W.
, and
Hollkamp
,
J. J.
,
2006
, “
Reduced-Order Modeling of the Random Response of Curved Beams Using Implicit Condensation
,” AIAA-2006-1926.
12.
Spottswood
,
S. M.
,
Hollkamp
,
J. J.
, and
Eason
,
T. G.
,
2008
, “
On the Use of Reduced-Order Models for a Shallow Curved Beam Under Combined Loading
,”
Proceedings of the 49th Structures, Structural Dynamics, and Materials Conference
,
Schaumburg, IL
, Apr. 7–10, AIAA Paper AIAA-2008-1873.
13.
Przekop
,
A.
, and
Rizzi
,
S. A.
,
2007
, “
Dynamic Snap-Through of Thin-Walled Structures by a Reduced-Order Method
,”
AIAA J.
,
45
(
10
), pp.
2510
2519
.10.2514/1.26351
14.
Spottswood
,
S. M.
,
Eason
,
T. G.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2009
, “
Nonlinear Reduced Order Modeling of Curved Beams: A Comparison of Methods
,”
Proceedings of the 50th Structures, Structural Dynamics, and Materials Conference
,
Palm Springs, CA
, May 4–7, AIAA Paper AIAA-2009-2433.
15.
Perez
,
R.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2011
, “
Reduced Order Modeling for the Nonlinear Geometric Response of Cracked Panels
,”
Proceedings of the 52th Structures, Structural Dynamics, and Materials Conference
,
Denver, CO
, April 4–7, AIAA Paper AIAA-2011-2018.
16.
Kim
,
K.
,
Kim
,
Y. C.
,
Mignolet
,
M. P.
,
Liu
,
D. D.
,
Chen
,
P. C.
, and
Lee
,
D. H.
,
2007
, “
Random Aeroelastic Response Due to Strong Hypersonic Unsteady-Wave/Shock Interaction With Acoustic Loads
,”
Proceedings of the 48th Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
, Apr. 23–26, AIAA Paper AIAA-2007-2014.
17.
Liu
,
D. D.
,
Chen
,
P. C.
,
Zhang
,
Z.
,
Wang
,
Z.
,
Yang
,
S.
,
Lee
,
D. H.
,
Mignolet
,
M. P.
,
Kim
,
K.
,
Liu
,
F.
,
Lindsley
,
N.
, and
Beran
,
P.
,
2009
, “
Continuous Dynamic Simulation of Nonlinear Aerodynamic/Nonlinear Structure Interaction (NANSI) for Morphing Wing Aeroelasticity
,”
Proceedings of the 50th Structures, Structural Dynamics, and Materials Conference
,
Palm Springs, CA
, May 4–7, AIAA Paper AIAA-2009-2572.
18.
Liu
,
D. D.
,
Wang
,
Z.
,
Yang
,
S.
,
Cai
,
C.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2009
, “
Nonlinear Aeroelastic Methodology for a Membrane-on-Ballute Model With Hypersonic Bow Shock
,”
Proceedings of the 50th Structures, Structural Dynamics, and Materials Conference
,
Palm Springs, CA
, May 4–7, AIAA Paper AIAA-2009-2363.
19.
Perez
,
R.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2011
, “
Nonlinear Reduced Order Models for Thermoelastodynamic Response of Isotropic and FGM Panels
,”
AIAA J.
,
49
, pp.
630
641
.10.2514/1.J050684
20.
Perez
,
R.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2010
, “
Steady and Unsteady Nonlinear Thermoelastodynamic Response of Panels by Reduced Order Models
,”
Proceedings of the 51th Structures, Structural Dynamics, and Materials Conference
,
Orlando, Florida
, April 12–15, AIAA Paper AIAA-2010-2724.
21.
Matney
,
A.
,
Perez
,
R.
, and
Mignolet
,
M. P.
,
2011
, “
Nonlinear Unsteady Thermoelastodynamic Response of a Panel Subjected to an Oscillating Flux by Reduced Order Models
,”
Proceedings of the 52th Structures, Structural Dynamics, and Materials Conference
,
Denver, CO
, April 4–7, AIAA Paper AIAA-2011-2016.
22.
Mignolet
,
M. P.
, and
Soize
,
C.
,
2008
, “
Stochastic Reduced Order Models for Uncertain Geometrically Nonlinear Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
3951
3963
.10.1016/j.cma.2008.03.032
23.
Capiez-Lernout
,
E.
,
Soize
,
C.
, and
Mignolet
,
M. P.
,
2012
, “
Computational Stochastic Statics of an Uncertain Curved Structure With Geometrical Nonlinearity in Three-Dimensional Elasticity
,”
Comput. Mech.
,
49
(
1
), pp.
87
97
.10.1007/s00466-011-0629-y
24.
Muravyov
,
A. A.
, and
Rizzi
,
S. A.
,
2003
, “
Determination of Nonlinear Stiffness With Application to Random Vibration of Geometrically Nonlinear Structures
,”
Comput. Struct.
,
81
, pp.
1513
1523
.10.1016/S0045-7949(03)00145-7
25.
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Groen
,
D. S.
,
2006
, “
Nonlinear Acoustic Response of an Aircraft Fuselage Sidewall Structure by a Reduced-Order Analysis
,”
Proceedings of the 9th International Conference on Recent Advances in Structural Dynamics
,
Southampton, UK
, Jul. 17–19.
26.
Fung
,
Y. C.
, and
Tong
,
T.
,
2001
,
Classical and Computational Solid Mechanics
,
World Scientific
,
River Edge, NJ
.
27.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge
, UK.
28.
Buehrle
,
R. D.
,
Fleming
,
G. A.
,
Pappa
,
R. S.
, and
Grosveld
,
F. W.
,
2000
, “
Finite Element Model Development for Aircraft Fuselage Structures
,”
Proceedings of the 18th Modal Analysis Conference
,
San Antonio, TX
.
29.
Gray
,
C. E.
,
Mei
,
C.
, and
Shore
,
C. P.
,
1991
, “
Finite Element Method for Large-Amplitude Two-Dimensional Panel Flutter at Hypersonic Speeds
,”
AIAA J.
,
29
(
1
), pp.
290
298
.10.2514/3.10576
You do not currently have access to this content.