This paper presents the nonlinear frequency response of a multistage clutch damper system in the framework of the harmonic balance method. For the numerical analysis, a multistage clutch damper with multiple nonlinearities is modeled as a single degree-of-freedom torsional system subjected to sinusoidal excitations. The nonlinearities include piecewise-linear stiffness, hysteresis, and preload all with asymmetric transition angles. Then, the nonlinear frequency response of the system is numerically obtained by applying the Newton–Raphson method to a system equation formulated by using the harmonic balance method. The resulting nonlinear frequency response is then compared with that obtained by direct numerical simulation of the system in the time domain. Using the simulation results, the stability characteristics and existence of quasi-harmonic response of the system are investigated. Also, the effect of stiffness values on the dynamic performance of the system is examined.

References

References
1.
Trochon
,
E. P.
, and
Singh
,
R.
,
1998
, “
Effect of Automotive Gearbox Temperature on Transmission Rattle Noise
,”
Noise-Con 98 Proceedings
, pp.
151
156
.
2.
Yoon
,
J. Y.
, and
Singh
,
R.
,
2013
, “
Effect of Multi-Staged Clutch Damper Characteristics on Transmission Gear Rattle Under Two Engine Conditions
,”
Proc. IMechE Part D
,
227
(
9
), pp.
1273
1294
.10.1177/0954407013493267
3.
Yoon
,
J. Y.
, and
Lee
,
I. J.
,
2013
, “
Nonlinear Analysis of Vibro-Impacts for Unloaded Gear Pairs With Various Excitation and System Parameters
,”
ASME J. Vibr. Acoust.
(submitted).
4.
Yoon
,
J. Y.
,
2003
, “
Effect of Multi-Staged Clutch Damper Characteristics on Vibro-Impacts Within a Geared System
,” MS thesis,
The Ohio State University
.
5.
Peng
,
Z. K.
,
Lang
,
Z. Q.
,
Billings
,
S. A.
, and
Tomlinson
,
G. R.
,
2008
, “
Comparison Between Harmonic Balance and Nonlinear Output Frequency Response Function in Nonlinear System Analysis
,”
J. Sound Vibr.
,
311
, pp.
56
73
.10.1016/j.jsv.2007.08.035
6.
Chen
,
Y. M.
,
Liu
,
J. K.
, and
Meng
,
G.
,
2012
, “
Incremental Harmonic Balance Method for Nonlinear Flutter of an Airfoil With Uncertain-But-Bounded Parameters
,”
Appl. Math. Model.
,
36
, pp.
657
667
.10.1016/j.apm.2011.07.016
7.
Al-shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train Using Multi-Term Harmonic Balance Method: Sub-Harmonic Motions
,”
J. Sound Vibr.
,
279
, pp.
417
451
.10.1016/j.jsv.2003.11.029
8.
Genesio
,
R.
, and
Tesi
,
A.
,
1992
, “
Harmonic Balance Methods for the Analysis of Chaotic Dynamics in Nonlinear Systems
,”
Automatica
,
28
(
3
), pp.
531
548
.10.1016/0005-1098(92)90177-H
9.
Masiani
,
R.
,
Capecchi
,
D.
, and
Vestroni
,
F.
,
2002
, “
Resonant and Coupled Response of Hysteretic Two-Degree-of-Freedom Systems Using Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
37
, pp.
1421
1434
.10.1016/S0020-7462(02)00023-9
10.
Raghothama
,
A.
, and
Narayanan
,
S.
,
1999
, “
Bifurcation and Chaos in Geared Rotor Bearing System by Incremental Harmonic Balance Method
,”
J. Sound Vibr.
,
226
(
3
), pp.
469
492
.10.1006/jsvi.1999.2264
11.
Raghothama
,
A.
, and
Narayanan
,
S.
,
2000
, “
Bifurcation and Chaos of an Articulated Loading Platform With Piecewise Non-Linear Stiffness Using the Incremental Harmonic Balance Method
,”
Ocean Eng.
,
27
, pp.
1087
1107
.10.1016/S0029-8018(99)00025-6
12.
Shen
,
Y.
,
Yang
,
S.
, and
Liu
,
X.
,
2006
, “
Nonlinear Dynamics of a Spur Gear Pair With Time-Varying Stiffness and Backlash Based on Incremental Harmonic Balance Method
,”
Int. J. Mech. Sci.
,
48
, pp.
1256
1263
.10.1016/j.ijmecsci.2006.06.003
13.
Duan
,
C.
, and
Singh
,
R.
,
2009
, “
Forced Vibration of a Torsional Oscillator With Coulomb Friction Under a Periodically Varying Normal Load
,”
J. Sound Vibr.
,
325
, pp.
499
506
.10.1016/j.jsv.2009.04.003
14.
Duan
,
C.
, and
Singh
,
R.
,
2007
, “
Dynamic Analysis of Preload Nonlinearity in a Mechanical Oscillator
,”
J. Sound Vibr.
,
301
, pp.
963
978
.10.1016/j.jsv.2006.10.042
15.
Wong
,
C. W.
,
Zhang
,
W. S.
, and
Lau
,
S. L.
,
2006
, “
Periodic Forced Vibration of Unsymmetrical Piecewise-Linear Systems by Incremental Harmonic Balance Method
,”
J. Sound Vibr.
,
48
, pp.
1256
1263
.
16.
Padmanabhan
,
C.
, and
Singh
,
R.
,
1992
, “
Spectral Coupling Issues in a Two-Degree-of-Freedom System With Clearance Non-Linearities
,”
J. Sound Vibr.
,
155
(
2
), pp.
209
230
.10.1016/0022-460X(92)90508-U
17.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
2005
, “
Super- and Sub-Harmonic Response Calculation for a Torsional System With Clearance Nonlinearity Using the Harmonic Balance Method
,”
J. Sound Vibr.
,
281
, pp.
965
993
.10.1016/j.jsv.2004.02.039
18.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
2005
, “
Effect of Nonlinear Impact Damping on the Frequency Response of a Torsional System With Clearance
,”
J. Sound Vibr.
,
281
, pp.
995
1021
.10.1016/j.jsv.2004.02.038
19.
Comparin
,
R. J.
, and
Singh
,
R.
,
1989
, “
Non-Linear Frequency Response Characteristics of an Impact Pair
,”
J. Sound Vibr.
,
134
(
2
), pp.
259
290
.10.1016/0022-460X(89)90652-4
20.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
2003
, “
Effect of Smoothening Functions on the Frequency Response of an Oscillator With Clearance Non-Linearity
,”
J. Sound Vibr.
,
263
, pp.
665
678
.10.1016/S0022-460X(02)01469-4
21.
Rook
,
T. E.
, and
Singh
,
R.
,
1995
, “
Dynamic Analysis of a Reverse-Idler Gear Pair With Concurrent Clearance
,”
J. Sound Vibr.
,
182
(
2
), pp.
303
322
.10.1006/jsvi.1994.0198
22.
Comparin
,
R. J.
, and
Singh
,
R.
,
1990
, “
Frequency Response Characteristics of a Multi-Degree-of-Freedom System With Clearance
,”
J. Sound Vibr.
,
142
(
1
), pp.
101
124
.10.1016/0022-460X(90)90585-N
23.
Duan
,
C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
2007
, “
Sub-Harmonic Resonance in a Nearly Pre-Loaded Mechanical Oscillator
,”
Nonlinear Dyn.
,
50
(
3
), pp.
639
650
.10.1007/s11071-006-9185-y
24.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method-Application to Rotor Systems
,”
ASME J. Vibr. Acoust.
,
119
(1), pp.
9
20
.10.1115/1.2889694
25.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1998
, “
An Algorithm for Response and Stability of Large Order Non-Linear Systems-Application to Rotor Systems
,”
J. Sound Vibr.
,
214
(
4
), pp.
695
723
.10.1006/jsvi.1998.1614
26.
Von Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vibr.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
27.
Royston
,
T. J.
, and
Singh
,
R.
,
1996
, “
Periodic Response of Mechanical Systems With Local Non-Linearities Using an Enhanced Galerkin Technique
,”
J. Sound Vibr.
,
194
(
2
), pp.
243
263
.10.1006/jsvi.1996.0355
28.
Lee
,
J. H.
, and
Singh
,
R.
,
2008
, “
Nonlinear Frequency Responses of Quarter Vehicle Models With Amplitude-Sensitive Engine Mounts
,”
J. Sound Vibr.
,
313
, pp.
784
805
.10.1016/j.jsv.2007.12.006
29.
Seydel
,
R.
,
1994
,
Practical Bifurcation and Stability Analysis
,
Springer
,
Berlin
.
30.
Deconinck
,
B.
, and
Kutz
,
J. N.
,
2006
, “
Computing Spectra of Linear Operators Using the Floquet-Fourier-Hill Method
,”
J. Comput. Phys.
,
219
, pp.
296
321
.10.1016/j.jcp.2006.03.020
You do not currently have access to this content.