In this paper the approximate analytical solutions of period-1 motion in the periodically forced van der Pol oscillator are obtained by the generalized harmonic balance (HB) method. Such an approximate solution of periodic motion is given by the Fourier series expression, and the convergence of such an expression is guaranteed by the Fourier series theory of periodic functions. The approximate solution is different from traditional, approximate solution because the number of total harmonic terms (N) is determined by the precision of harmonic amplitude quantity level, set by the investigator (e.g., ANɛ and ɛ=10-8). The stability and bifurcation analysis of the period-1 solutions is completed through the eigenvalue analysis of the coefficient dynamical systems of the Fourier series expressions of periodic solutions, and numerical illustrations of period-1 motions are compared to verify the analytical solutions of periodic motions. The trajectories and analytical harmonic amplitude spectrum for stable and unstable periodic motions are presented. The harmonic amplitude spectrum shows the harmonic term effects on periodic motions, and one can directly know which harmonic terms contribute on periodic motions and the convergence of the Fourier series expression is clearly illustrated.

References

References
1.
van der Pol
,
B.
,
1920
, “
A Theory of the Amplitude of Free and Forced Triode Vibrations
,”
Radio Rev.
,
1
, pp.
701
710
.
2.
van der Pol
,
B.
, and
van der Mark
,
J.
,
1927
, “
Frequency Demultiplication
,”
Nature
,
120
pp.
363
364
.10.1038/120363a0
3.
Lagrange
,
J. L.
,
1788
,
Mecanique Analytique
,
Albert Balnchard
,
Paris
, Vol. 2.
4.
Fatou
,
P.
,
1928
, “
Sure′ le Mouvement d’un Systeme Soumis a′ des Forces a Courte Periode
,”
Bull. Soc. Math. France
,
56
, pp.
98
139
.
5.
Krylov
,
N. M.
, and
Bogolyubov
,
N. N.
,
1935
, “
Methodes Approchoes de la Mecanique Non Lineaire Dans Leur Application a l’6tude de la Perturbation des Mouvements Periodiques de Divers Phenomenes de Resonance s’y Rapportant
,” Academie des Sciences d’Ukraine, Kiev.
6.
Bogoliubov
,
N.
, and
Mitropolsky
,
Y.
,
1961
,
Asymptotic Methods in the Theory of Nonlinear Oscillations
,
Gordon and Breach
,
New York
.
7.
Hayashi
,
C.
1964
,
Nonlinear Oscillations in Physical Systems
,
McGraw-Hill
,
New York
, Vol. 33.
8.
Cap
,
F.
,
1974
, “
Averaging Method for the Solution of Nonlinear Differential Equations With Periodic Non-Harmonic Solutions
,”
Int. J. Non-Linear Mech.
,
9
, pp.
441
450
.10.1016/0020-7462(74)90010-9
9.
Coppola
, V
.
, and
Rand
,
R.
,
1990
, “
Averaging Using Elliptic Functions: Approximation of Limit Cycles
,”
Acta Mech.
,
81
, pp.
125
142
.10.1007/BF01176982
10.
Rand
,
R.
, and
Armbruster
,
D.
,
1987
,
Perturbation Methods, Bifurcation Theory, and Computer Algebra
,
Springer
,
New York.
11.
Garcia-Margallo
,
J.
, and
Bejarano
,
J. D.
,
1987
, “
A Generalization of the Method of Harmonic Balance
,”
J. Sound Vib.
,
116
, pp.
591
595
.10.1016/S0022-460X(87)81390-1
12.
Xu
,
Z.
, and
Cheung
,
Y.
,
1994
, “
Averaging Method Using Generalized Harmonic Functions for Strongly Nonlinear Oscillators
,”
J. Sound Vib.
,
174
, pp.
563
576
.10.1006/jsvi.1994.1294
13.
Buonomo
,
A.
,
1998
, “
On the Periodic Solution of the van der Pol Equation for the Small Damping Parameter
,”
Int. J. Circuit Theory Appl.
,
26
, pp.
39
52
.10.1002/(SICI)1097-007X(199801/02)26:1<39::AID-CTA6>3.0.CO;2-X
14.
Buonomo
,
A.
,
1998
, “
The Periodic Solution of van der Pol’s Equation
,”
SIAM J. Appl. Math.
,
59
, pp.
156
171
.10.1137/S0036139997319797
15.
Waluya
,
S. B.
, and
Van Horssen
,
W. T.
,
2003
, “
On Approximation of First Integrals for a Strongly Nonlinear Forced Oscillator
,”
Nonlinear Dyn.
,
33
, pp.
225
252
.10.1023/A:1026058204654
16.
Luo
,
A. C. J.
, and
Huang
,
J.
,
2011
, “
Approximate Solutions of Periodic Motions in Nonlinear Systems via a Generalized Harmonic Balance
,”
J. Vib. Control
,
18
, pp.
1661
1671
.10.1177/1077546311421053
17.
Luo
,
A. C. J.
, and
Huang
,
J.
2012
, “
Analytical Dynamics of Period-m Flows and Chaos in Nonlinear Systems
,”
Int. J. Bifurcation Chaos
,
22
(
4
), p.
1250093
.10.1142/S0218127412500939
18.
Luo
,
A. C. J.
,
2012
,
Continuous Dynamical Systems
,
HEP-L&H Scientific
,
Beijing/Glen Carbon
.
You do not currently have access to this content.