In this paper, we analyze the dynamics of a delayed food chain system with harvesting. Sufficient conditions for the local stability of the positive equilibrium and for the existence of Hopf bifurcation are obtained by analyzing the associated characteristic equation. Formulas for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theorem. Finally, numerical simulation results are presented to validate the theoretical analysis.

References

References
1.
Chen
,
L.
,
1988
,
Mathematical Ecology Modelling and Research Methods
,
Science Press
,
Beijing
(in Chinese).
2.
Takeuchi
,
Y.
,
1996
,
Global Dynamical Properties of Lotka–Volterra Systems
,
World Scientific
,
Singapore
.
3.
Korobeinikov
,
A.
,
2001
, “
A Lyapunov Function for Leslie-Gower Predator-Prey Models
,”
Appl. Math. Lett.
,
14
, pp.
697
699
.10.1016/S0893-9659(01)80029-X
4.
Fan
,
M.
, and
Kuang
,
Y.
,
2004
, “
Dynamics of a Nonautonomous Predator-Prey System With the Beddington–DeAngelis Functional Response
,”
J. Math. Anal. Appl.
,
295
, pp.
15
39
.10.1016/j.jmaa.2004.02.038
5.
Etoua
,
R. M.
, and
Rousseau
,
C.
,
2010
, “
Bifurcation Analysis of a Generalized Gause Model With Prey Harvesting and a Generalized Holling Response Function of Type III
,”
J. Differ. Eq.
,
249
, pp.
2316
2356
.10.1016/j.jde.2010.06.021
6.
Cantrell
,
R. S.
,
1996
, “
Antibifurcation and the n-Species Lotka–Volterra Competition Model With Diffusion
,”
Differ. Integral Equ.
,
9
, pp.
305
322
.
7.
Klebanoff
,
A.
, and
Hastings
,
A.
,
1994
, “
Chaos in Three-Species Food Chains
,”
J. Math. Biol.
,
32
, pp.
427
451
.10.1007/BF00160167
8.
Vayenas
,
D. V.
,
Aggelis
,
G.
,
Tsagou
,
V.
, and
Pavlou
,
S.
,
2005
, “
Dynamics of a Two-Prey One-Predator System With Predator Switching Regulated by a Catabolic Repression Control-Like Mode
,”
Ecolog. Model.
,
186
, pp.
345
357
.10.1016/j.ecolmodel.2005.01.032
9.
Ko
,
W.
, and
Ahn
,
I.
,
2007
, “
Analysis of Ratio-Dependent Food Chain Model
,”
J. Math. Anal. Appl.
,
335
, pp.
498
523
.10.1016/j.jmaa.2007.01.089
10.
Hou
,
Z.
,
2009
, “
Global Attractor in Competitive Lotka–Volterra Systems
,”
Math. Nachr.
,
282
, pp.
995
1008
.10.1002/mana.200610785
11.
Zhang
,
G.
,
Zhang
,
W.
, and
Wang
,
X.
,
2012
, “
Coexistence States for a Diffusive One-Prey and Two-Predators Model With B-D Functional Response
,”
J. Math. Anal. Appl.
,
387
, pp.
931
948
.10.1016/j.jmaa.2011.09.049
12.
Kar
,
T.
,
2003
, “
Selective Harvesting in a Prey-Predator Fishery With Time Delay
,”
Math. Comput. Model.
,
38
, pp.
449
458
.10.1016/S0895-7177(03)90099-9
13.
Kar
,
T.
,
2006
, “
Modelling and Analysis of a Harvested Prey-Predator System Incorporating a Prey Refuge
,”
J. Comput. Appl. Math.
,
185
, pp.
19
33
.10.1016/j.cam.2005.01.035
14.
Kumar
,
S.
,
Srivastava
,
S. K.
, and
Chingakham
,
P.
,
2002
, “
Hopf Bifurcation and Stability Analysis in a Harvested One-Predator Two-Prey Model
,”
Appl. Math. Comput.
,
129
, pp.
107
118
.10.1016/S0096-3003(01)00033-9
15.
Gakkar
,
S.
, and
Sing
,
B.
,
2007
, “
The Dynamics of a Food Web Consisting of Two Preys and a Harvesting Predator
,”
Chaos Solitons Fractals
,
34
, pp.
1346
1356
.10.1016/j.chaos.2006.04.067
16.
Chakraborty
,
K.
,
Jana
,
S.
, and
Kar
,
T.
,
2012
, “
Global Dynamics and Bifurcation in a Stage Structured Prey-Predator Fishery Model With Harvesting
,”
Appl. Math. Comput.
,
218
, pp.
9271
9290
.10.1016/j.amc.2012.03.005
17.
Kar
,
T.
, and
Ghorai
,
A.
,
2011
, “
Dynamic Behaviour of a Delayed Predator-Prey Model With Harvesting
,”
Appl. Math. Comput.
,
217
, pp.
9085
9104
.10.1016/j.amc.2011.03.126
18.
Das
,
T.
,
Mukherjee
,
R.
, and
Chaudhuri
,
K.
,
2009
, “
Harvesting of a Prey-Predator Fishery in the Presence of Toxicity
,”
Appl. Math. Model
,
33
, pp.
2282
2292
.10.1016/j.apm.2008.06.008
19.
Lv
,
Y.
,
Yuan
,
R.
, and
Pei
,
Y.
,
2013
, “
A Prey-Predator Model With Harvesting for Fishery Resource With Reserve Area
,”
Appl. Math. Model
,
37
, pp.
3048
3062
.10.1016/j.apm.2012.07.030
20.
Sadhukhan
,
D.
,
Sahoo
,
L. N.
,
Mondal
,
B.
, and
Maiti
,
M.
,
2010
, “
Food Chain Model With Optimal Harvesting in Fuzzy Environment
,”
J. Appl. Math. Comput.
,
34
, pp.
1
18
.10.1007/s12190-009-0301-2
21.
Hassard
,
B. D.
,
Kazarinoff
,
N. D.
, and
Wan
,
Y.
,
1981
,
Theory and Applications of Hopf Bifurcation
,
Cambridge University Press
,
Cambridge
, UK.
You do not currently have access to this content.