Sensitivity vector fields (SVFs) have proven to be an effective method for identifying parametric variations in dynamical systems. These fields are constructed using information about how a dynamical system's attractor deforms under prescribed parametric variations. Once constructed, they can be used to quantify any additional variations from the nominal parameter set as they occur. Since SVFs are based on attractor deformations, the geometry and other qualities of the baseline system attractor impact how well a set of SVFs will perform. This paper examines the role attractor characteristics and the choices made in SVF construction play in determining the sensitivity of SVFs. The use of nonlinear feedback to change a dynamical system with the intent of improving SVF sensitivity is explored. These ideas are presented in the context of constructing SVFs for several dynamical systems.

References

References
1.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
,
1998
, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Dig.
,
30
(
2
), pp.
91
105
.10.1177/058310249803000201
2.
Farrar
,
C. R.
,
Doebling
,
S. W.
, and
Nix
,
D. A.
,
2003
, “
Vibration-Based Structural Damage Identification
,”
Philos. Trans. R. Soc.
,
359
(
1778
), pp.
131
149
.10.1098/rsta.2000.0717
3.
Worden
,
K.
,
Farrar
,
C. R.
,
Haywood
,
J.
, and
Todd
,
M.
,
2008
, “
A Review of Nonlinear Dynamics Applications to Structural Health Monitoring
,”
Struct. Control Health Monitor.
,
15
, pp.
540
567
.10.1002/stc.215
4.
Chelidze
,
D.
,
Cusumano
,
J. P.
, and
Chatterjee
,
A.
,
2002
, “
A Dynamical Systems Approach to Damage Evolution Tracking, Part 1: Description and Experimental Application
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
250
257
.10.1115/1.1456908
5.
Cusumano
,
J. P.
,
Chelidze
,
D.
, and
Chatterjee
,
A.
,
2002
, “
A Dynamical Systems Approach to Damage Evolution Tracking, Part 2: Model-Based Validation and Physical Interpretation
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
258
264
.10.1115/1.1456907
6.
Chelidze
,
D.
, and
Cusumano
,
J. P.
,
2006
, “
Phase Space Warping: Non-Linear Time Series Analysis for Slowly Drifting Systems
,”
Philos. Trans. R. Soc. Sect. A
,
364
, pp.
2495
2513
.10.1098/rsta.2006.1837
7.
Todd
,
M. D.
,
Nichols
,
J. M.
,
Pecora
,
L. M.
, and
Virgin
,
L. N.
,
2001
, “
Vibration-Based Damage Assessment Utilizing State Space Geometry Changes: Local Attractor Variance Ratio
,”
Smart Mater. Struct.
,
10
, pp.
1000
1008
.10.1088/0964-1726/10/5/316
8.
Nichols
,
J. M.
,
Trickey
,
S. T.
,
Todd
,
M. D.
, and
Virgin
,
L. N.
,
2003
, “
Structural Health Monitoring Through Chaotic Interrogation
,”
Meccanica
,
38
(
2
), pp.
239
250
.10.1023/A:1022898403359
9.
Todd
,
M. D.
,
Erikson
,
K.
,
Chang
,
L.
,
Lee
,
K.
, and
Nichols
,
J. M.
,
2004
, “
Using Chaotic Interrogation and Attractor Nonlinear Cross-Prediction Error to Detect Fastener Preload Loss in an Aluminum Frame
,”
Chaos
,
14
(
2
), pp.
387
399
.10.1063/1.1688091
10.
Torkamani
,
S.
,
Butcher
,
E. A.
,
Todd
,
M. D.
, and
Park
,
G.
,
2011
, “
Detection of System Changes Due to Damage Using a Tuned Hyperchaotic Probe
,”
Smart Mater. Struct.
,
20
, pp.
1
16
.10.1088/0964-1726/20/2/025006
11.
Epureanu
,
B. I.
, and
Hashmi
,
A.
,
2006
, “
Parameter Reconstruction Based on Sensitivity Vector Fields
,”
J. Vib. Acoust.
,
128
(
6
), pp.
732
740
.10.1115/1.2346692
12.
Hashmi
,
A.
, and
Epureanu
,
B. I.
,
2006
, “
Sensitivity Resonance and Attractor Morphing Quantified by Sensitivity Vector Fields for Parameter Reconstruction
,”
Nonlinear Dyn.
,
45
(
2
), pp.
319
335
.10.1007/s11071-005-9009-5
13.
Liu
,
M.
, and
Chelidze
,
D.
,
2006
, “
Multidimensional Damage Identification Based on Phase Space Warping: An Experimental Study
,”
Nonlinear Dyn.
,
46
, pp.
61
72
.10.1007/s11071-005-9007-7
14.
Yin
,
S. H.
, and
Epureanu
,
B. I.
,
2006
, “
Structural Health Monitoring Based on Sensitivity Vector Fields and Attractor Morphing
,”
Philos. Trans. R. Soc. Sect. A
,
364
, pp.
2515
2538
.10.1098/rsta.2006.1838
15.
Yin
,
S. H.
, and
Epureanu
,
B. I.
,
2007
, “
Experimental Enhanced Nonlinear Dynamics and Identification of Attractor Morphing Modes for Damage Detection
,”
J. Vib. Acoust,
,
129
(
6
), pp.
763
770
.10.1115/1.2775507
16.
Liu
,
M.
, and
Chelidze
,
D.
,
2008
, “
A New Type of Atomic Force Microscope Based on Chaotic Motions
,”
Int. J. Non-Linear Mech.
,
43
, pp.
521
526
.10.1016/j.ijnonlinmec.2008.03.001
17.
Lim
,
J.
, and
Epureanu
,
B. I.
,
2010
, “
Sensitivity Vector Fields for Atomic Force Microscopes
,”
Nonlinear Dyn.
,
59
(
1
), pp.
113
128
.10.1007/s11071-009-9525-9
18.
Kuehl
,
J.
, and
Chelidze
,
D.
,
2010
, “
Identifying Invariant Manifold Using Phase Space Warping and Stochastic Interrogation
,”
Int. J. Non-Linear Mech.
,
45
, pp.
42
55
.10.1016/j.ijnonlinmec.2009.09.001
19.
Corron
,
N. J.
,
Blakely
,
J. N.
, and
Stahl
,
M. T.
,
2010
, “
A Matched Filter for Chaos
,”
Chaos
,
20
, p.
023123
.10.1063/1.3432557
20.
Shinbrot
,
T.
,
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Using Chaos to Direct Trajectories to Targets
,”
Phys. Rev. Lett.
,
65
(
26
), pp.
3215
3218
.10.1103/PhysRevLett.65.3215
21.
Shinbrot
,
T.
,
Ditto
,
W.
,
Grebogi
,
C.
,
Ott
,
E.
,
Spano
,
M.
, and
Yorke
,
J. A.
,
1992
, “
Using the Sensitive Dependence of Chaos (the “Butterfly Effect”) to Direct Trajectories in an Experimental Chaotic System
,”
Phys. Rev. Lett.
,
68
(
19
), pp.
2863
2866
.10.1103/PhysRevLett.68.2863
22.
Melby
,
P.
,
Kaidel
,
J.
,
Weber
,
N.
, and
Hubler
,
A.
,
2000
, “
Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map
,”
Phys. Rev. Lett.
,
84
(
26
), pp.
5991
5993
.10.1103/PhysRevLett.84.5991
You do not currently have access to this content.