In this paper, a special type of neural dynamics (ND) is generalized and investigated for time-varying and static scalar-valued nonlinear optimization. In addition, for comparative purpose, the gradient-based neural dynamics (or termed gradient dynamics (GD)) is studied for nonlinear optimization. Moreover, for possible digital hardware realization, discrete-time ND (DTND) models are developed. With the linear activation function used and with the step size being 1, the DTND model reduces to Newton–Raphson iteration (NRI) for solving the static nonlinear optimization problems. That is, the well-known NRI method can be viewed as a special case of the DTND model. Besides, the geometric representation of the ND models is given for time-varying nonlinear optimization. Numerical results demonstrate the efficacy and advantages of the proposed ND models for time-varying and static nonlinear optimization.

References

References
1.
Bestle
,
D.
,
2008
, “
Optimization of a Platform With Respect to Force Contact Conditions
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041011
.10.1115/1.2960472
2.
Deshmukh
,
V.
,
2008
, “
Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time-Varying Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011010
.10.1115/1.2815335
3.
Sedlaczek
,
K.
, and
Eberhard
,
P.
,
2009
, “
Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021011
.10.1115/1.3079786
4.
Shin
,
H.
,
Lee
,
S.
,
In
,
W.
,
Jeong
,
J. I.
, and
Kim
,
J.
,
2011
, “
Kinematic Optimization of a Redundantly Actuated Parallel Mechanism for Maximizing Stiffness and Workspace Using Taguchi Method
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011017
.10.1115/1.4002268
5.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer-Verlag
,
New York
.
6.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University
,
New York
.
7.
Yang
,
Y.
,
2007
, “
Globally Convergent Optimization Algorithms on Riemannian Manifolds: Uniform Framework for Unconstrained and Constrained Optimization
,”
J. Optim. Theory Appl.
,
132
(
2
), pp.
245
265
.10.1007/s10957-006-9081-0
8.
Kim
,
S. D.
, and
Shin
,
B. C.
,
2009
, “
Adjoint Pseudospectral Least-Squares Methods for an Elliptic Boundary Value Problem
,”
Appl. Numer. Math.
,
59
(
2
), pp.
334
348
.10.1016/j.apnum.2008.02.008
9.
Lee
,
H. C.
, and
Chen
,
T. F.
,
2010
, “
A Nonlinear Weighted Least-Squares Finite Element Method for Stokes Equations
,”
Comput. Math. Appl.
,
59
(
1
), pp.
215
224
.10.1016/j.camwa.2009.08.033
10.
Goglio
,
L.
, and
Rossetto
,
M.
,
2004
, “
Comparison of Fatigue Data Using the Maximum Likelihood Method
,”
Eng. Fract. Mech.
,
71
(
4–6
), pp.
725
736
.10.1016/S0013-7944(03)00009-2
11.
Fares
,
B.
,
Noll
,
D.
, and
Apkarian
,
P.
,
2002
, “
Robust Control via Sequential Semidefinite Programming
,”
SIAM J. Control Optim.
,
40
(
6
), pp.
1791
1820
.10.1137/S0363012900373483
12.
Johansen
,
T. A.
,
Fsosen
,
T. I.
, and
Berge
,
S. P.
,
2004
, “
Constrained Nonlinear Control Allocation With Singularity Avoidance Using Sequential Quadratic Programming
,”
IEEE Trans. Control Syst. Technol.
,
12
(
1
), pp.
211
216
.10.1109/TCST.2003.821952
13.
Grudinin
,
N.
,
1998
, “
Reactive Power Optimization Using Successive Quadratic Programming Method
,”
IEEE Trans. Power Syst.
,
13
(
4
), pp.
1219
1225
.10.1109/59.736232
14.
Ljung
,
L.
, and
Söderström
,
T.
,
1983
,
Theory and Practice of Recursive Identification
,
MIT
,
London
.
15.
Feng
,
C. B.
, and
Zhao
,
Y.
,
1992
, “
Time-Varying Nonlinear Programming and Its Realization via Neural Networks
,”
Proc. American Control Conf.
,
2
, pp.
978
982
.
16.
Myung
,
H.
, and
Kim
,
J.-H.
,
1997
, “
Time-Varying Two-Phase Optimization and Its Application to Neural-Network Learning
,”
IEEE Trans. Neural Netw.
,
8
(
6
), pp.
1293
1300
.10.1109/72.641452
17.
Liu
,
G. H.
,
Jing
,
L. L.
,
Han
,
L. X.
, and
Han
,
D.
,
1999
, “
A Class of Nonmonotone Conjugate Gradient Methods for Unconstrained Optimization
,”
J. Optim. Theory Appl.
,
101
(
1
), pp.
127
140
.10.1023/A:1021723128049
18.
Chang
,
H. C.
, and
Prabhu
,
N.
,
2003
, “
Canonical Coordinates Method for Equality-Constrained Nonlinear Optimization
,”
Appl. Math. Comput.
,
140
(
1
), pp.
135
158
.10.1016/S0096-3003(02)00217-5
19.
Zhang
,
J.
,
2006
, “
A Robust Trust Region Method for Nonlinear Optimization With Inequality Constraint
,”
Appl. Math. Comput.
,
176
(
2
), pp.
688
699
.10.1016/j.amc.2005.10.015
20.
Ji
,
Y.
,
Zhang
,
K.-C.
,
Qu
,
S.-J.
, and
Zhou
,
Y.
,
2007
, “
A Trust-Region Method by Active-Set Strategy for General Nonlinear Optimization
,”
Comput. Math. Appl.
,
54
(
2
), pp.
229
241
.10.1016/j.camwa.2007.02.003
21.
Xue
,
X.
, and
Bian
,
W.
,
2007
, “
A Project Neural Network for Solving Degenerate Convex Quadratic Program
,”
Neurocomputing
,
70
(
13–15
), pp.
2449
2459
.10.1016/j.neucom.2006.10.038
22.
Costantini
,
G.
,
Perfetti
,
R.
, and
Todisco
,
M.
,
2008
, “
Quasi-Lagrangian Neural Network for Convex Quadratic Optimization
,”
IEEE Trans. Neural Netw.
,
19
(
10
), pp.
1804
1809
.10.1109/TNN.2008.2001183
23.
Zhang
,
Y.
, and
Yi
,
C.
,
2011
,
Zhang Neural Networks and Neural-Dynamic Method
,
Nova Science
,
New York
.
24.
Mead
,
C.
,
1989
,
Analog VLSI and Neural Systems
,
Addison-Wesley
,
Reading, MA
.
25.
Mathews
,
J. H.
, and
Fink
,
K. D.
,
2005
,
Numerical Methods Using MATLAB
,
Publishing House of Electronics Industry
,
Beijing
.
26.
Mitra
,
S. K.
,
2006
,
Digital Signal Processing - A Computer-Based Approach
,
3rd ed.
,
Tsinghua University
,
Beijing
.
27.
David
,
F. G.
, and
Desmond
,
J. H.
,
2010
,
Numerical Methods for Ordinary Differential Equations: Initial Value Problems
,
Springer
,
UK
.
You do not currently have access to this content.