Operational space modeling and control are important techniques for robot manipulation. A key element of operational space control is the operational space inertia matrix (OSIM). The OSIM matrix represents a mapping between end-effector spatial forces and spatial accelerations and is configuration-dependent. In the case of multiple end-effectors, the OSIM also encapsulates the dynamics cross coupling between the end-effectors. The rich structure of the OSIM for tree systems has been exploited by researchers for analysis and the development of low-order computational algorithms. Extending such techniques to the OSIM for closed-chain robotic systems is the focus of this short paper. We derive explicit analytical expressions for the closed-chain OSIM that reveals its close relationship to an extended tree-system OSIM.

References

References
1.
Nakanishi
,
J.
,
Cory
,
R.
,
Mistry
,
M.
,
Peters
,
J.
, and
Schaal
,
S.
,
2008
, “
Operational Space Control: A Theoretical and Empirical Comparison
,”
Int. J. Robot. Res.
,
27
(
6
), pp.
737
757
.10.1177/0278364908091463
2.
Siciliano
,
B.
and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer
,
New York
.
3.
Khatib
,
O.
,
1988
, “
Object Manipulation in a Multi-Effector System
,”
Proceedings of the 4th International Symposium on Robotics Research
, pp.
137
144
.
4.
Khatib
,
O.
,
1987
, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE J. Rob. Autom.
,
RA-3
(
1
), pp.
43
53
.10.1109/JRA.1987.1087068
5.
Khatib
,
O.
,
1985
, “
The Operational Space Formulation in the Analysis, Design, and Control of Manipulators
,”
Proceedings of the 3rd International Symposium Robotics Research
.
6.
Khatib
,
O.
,
1983
, “
Dynamic Control of Manipulators in Operational Space
,”
Proceedings of the 6th CISM–IFToMM Congress on Theory of Machines and Mechanisms
.
7.
Kreutz-Delgado
,
K.
,
Jain
,
A.
, and
Rodriguez
,
G.
,
1990
, “
Recursive Formulation of Operational Space Control
,”
Proceedings of the 3rd International Symposium on Robotics and Manufacturing
.
8.
Kreutz-Delgado
,
K.
,
Jain
,
A.
, and
Rodriguez
,
G.
,
1992
, “
Recursive Formulation of Operational Space Control
,”
Int. J. Robot. Res.
,
11
(
4
), pp.
320
328
.10.1177/027836499201100405
9.
Lilly
,
K. W.
and
Orin
,
D. E.
,
1990
, “
Efficient O(N) Computation of the Operational Space Mass Matrix
,”
Proceedings of the IEEE International Conference on Robotics and Automation
.
10.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
,
1992
, “
Spatial Operator Algebra for Multibody System Dynamics
,”
J. Astronaut. Sci.
,
40
(
1
), pp.
27
50
. Available at: http://dartslab.jpl.nasa.gov/References/pdf/1992-gen-multibody.pdf
11.
Chang
,
K.-s.
and
Khatib
,
O.
,
2001
, “
Efficient Recursive Algorithm for the Operational Space Inertia Matrix of Branching Mechanisms
,”
Adv. Rob.
,
4
(
8
), pp.
703
715
.10.1163/156855301750078757
12.
Featherstone
,
R.
,
2010
, “
Exploiting Sparsity in Operational-Space Dynamics
,”
Int. J. Robot. Res.
,
29
(
1992
), pp.
1353
1368
.10.1177/0278364909357644
13.
Jain
,
A.
,
2011
,
Robot and Multibody Dynamics: Analysis and Algorithms
,
Springer
,
New York
.
14.
Park
,
J.
and
Khatib
,
O.
,
2006
. “
Contact Consistent Control Framework for Humanoid Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
1963
1969
.
15.
Sentis
,
L.
,
Park
,
J.
, and
Khatib
,
O.
,
2010
, “
Compliant Control of Multicontact and Center-of-Mass Behaviors in Humanoid Robots
,”
IEEE Trans. Rob. Autom.
,
26
(
3
), pp.
483
501
.10.1109/TRO.2010.2043757
16.
Russakow
,
J.
,
Khatib
,
O.
, and
Rock
,
S. M.
,
1995
, “
Extended Operational Space Formulation for Serial-to-Chain (Branching) Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
1056
1061
.
17.
Sapio
, V
. D.
,
Khatib
,
O.
, and
Delp
,
S. L.
,
2006
, “
Task-Level Approaches for the Control of Constrained Multibody Systems
,”
Multibody Syst. Dyn.
,
16
(
1
), pp.
73
102
.10.1007/s11044-006-9017-3
18.
Jain
,
A.
,
2013
, “
Operational Space Inertia for Robots With Internal Loops
,”
Proceedings of the Multibody Dynamics 2013, ECCOMAS Thematic Conference
.
19.
Boyd
,
S.
and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, England
.
20.
Hudson
,
N.
,
Howard
,
T.
,
Ma
,
J.
,
Jain
,
A.
,
Bajracharya
,
M.
,
Myint
,
S.
,
Kuo
,
C.
,
Matthies
,
L.
,
Backes
,
P. G.
,
Hebert
,
P.
Fuchs
,
T.
, and
Burdick
,
J. W.
,
2012
, “
End-to-End Dexterous Manipulation With Deliberate Interactive Estimation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
.
You do not currently have access to this content.