This paper discusses the problem of control constraint realization applied to the design of maneuvers of complex underactuated systems modeled as multibody problems. Applications of interest in the area of aerospace engineering are presented and discussed. The tangent realization of the control constraint is discussed from a theoretical point of view and is used to determine feedforward control of realistic underactuated systems. The effectiveness of the computed feedforward input is subsequently verified by applying it to more detailed models of the problems, in the presence of disturbances and uncertainties in combination with feedback control. The problems are solved using a free general-purpose multibody software that writes the constrained dynamics of multifield problems formulated as differential-algebraic equations. The equations are integrated using unconditionally stable algorithms with tunable dissipation. The essential extension to the multibody code consisted of the addition of the capability to write arbitrary constraint equations and apply the corresponding reaction multipliers to arbitrary equations of motion. The modeling capabilities of the formulation could be exploited without any undue restriction on the modeling requirements.

References

References
1.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p. 011004.10.1115/1.2803257
2.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p. 011005.10.1115/1.2803258
3.
Chen
,
Y.-H.
,
2005
, “
Mechanical Systems Under Servo Constraints: The Lagrange's Approach
,”
Mechatronics
,
15
(
3
), pp.
317
337
.10.1016/j.mechatronics.2004.09.003
4.
Chen
,
Y.-H.
,
2008
, “
Equations of Motion of Mechanical Systems Under Servo Constraints: The Maggi Approach
,”
Mechatronics
,
18
(
4
), pp.
208
217
.10.1016/j.mechatronics.2007.12.004
5.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2007
, “
Control of Underactuated Mechanical Systems With Servo-Constraints
,”
Nonlinear Dyn.
,
50
(
4
), pp.
781
791
.10.1007/s11071-007-9231-4
6.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2004
, “
A Geometric Approach to Solving Problem of Control Constraints: Theory and a DAE Framework
,”
Multibody Syst. Dyn.
,
11
(
4
), pp.
343
364
.10.1023/B:MUBO.0000040800.40045.51
7.
Wang
,
J. T.
,
1990
, “
Inverse Dynamics of Constrained Multibody Systems
,”
J. Appl. Mech.
,
57
(
3
), pp.
750
757
.10.1115/1.2897087
8.
Blajer
,
W.
,
1997
, “
Dynamics and Control of Mechanical Systems in Partly Specified Motion
,”
J. Franklin Inst.
,
334
(
3
), pp.
407
426
.10.1016/S0016-0032(96)00091-9
9.
Lam
,
S.
,
1998
, “
On Lagrangian Dynamics and Its Control Formulations
,”
Appl. Math. Comput.
,
91
(
2–3
), pp.
259
284
.10.1016/S0096-3003(97)10004-2
10.
Rosen
,
A.
,
1999
, “
Applying the Lagrange Method to Solve Problems of Control Constraints
,”
J. Appl. Mech.
,
66
(
4
), pp.
1013
1015
.10.1115/1.2791770
11.
Gobulev
,
Y.
,
2001
, “
Mechanical Systems With Servoconstraints
,”
J. Appl. Math. Mech.
,
65
(
2
), pp.
205
217
.10.1016/S0021-8928(01)00024-7
12.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2008
, “
Modeling of Underactuated Mechanical Systems in Partly Specified Motion
,”
J. Theor. Appl. Mech.
,
46
(
2
), pp.
383
394
.
13.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
,
2011
, “
Improved DAE Formulation for Inverse Dynamics Simulation of Cranes
,”
Multibody Syst. Dyn.
,
25
(
2
), pp.
131
143
.10.1007/s11044-010-9227-6
14.
Fumagalli
,
A.
,
Masarati
,
P.
,
Morandini
,
M.
, and
Mantegazza
,
P.
,
2011
, “
Control Constraint Realization for Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011002
.10.1115/1.4002087
15.
Singh
,
R. P.
, and
Likins
,
P. W.
,
1985
, “
Singular Value Decomposition for Constrained Dynamical Systems
,”
J. Appl. Mech.
,
52
(
4
), pp.
943
948
.10.1115/1.3169173
16.
Mani
,
N. K.
,
Haug
,
E. J.
, and
Atkinson
,
K. E.
,
1985
, “
Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics
,”
ASME J. Mech. Trans. Auto. Design
,
107
(
1
), pp.
82
87
.10.1115/1.3258699
17.
Kim
,
S. S.
, and
Vanderploeg
,
M. J.
,
1986
, “
QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems
,”
ASME J. Mech. Trans.
,
108
(
2
), pp.
183
188
.10.1115/1.3260800
18.
Blajer
,
W.
,
2001
, “
A Geometrical Interpretation and Uniform Matrix Formulation of Multibody System Dynamics
,”
ZAMM J. Appl. Math. Mech.
,
81
(
4
), pp.
247
259
.10.1002/1521-4001(200104)81:4<247::AID-ZAMM247>3.0.CO;2-D
19.
Pennestrì
,
E.
, and
Vita
,
L.
,
2004
, “
Strategies for the Numerical Integration of DAE Systems in Multibody Dynamics
,”
Comput. Appl. Eng. Ed.
,
12
(
2
), pp.
106
116
.10.1002/cae.20005
20.
Brenan
,
K. E.
,
Campbell
,
S. L. V.
, and
Petzold
,
L. R.
,
1989
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
New York
.
21.
Lambert
,
J. D.
,
1991
,
Numerical Methods for Ordinary Differential Systems
,
John Wiley and Sons
,
Chichester, UK
.
22.
Uhlar
,
S.
, and
Betsch
,
P.
,
2008
, “
Conserving Integrators for Parallel Manipulators
,”
Parallel Manipulators
,
J.-H.
Ryu
, Ed.,
I-Tech Education and Publishing
,
Vienna, Austria
, pp.
75
108
.
23.
Betsch
,
P.
,
Uhlar
,
S.
,
Saeger
,
N.
,
Siebert
,
R.
, and
Franke
,
M.
,
2010
, “
Benefits of a Rotationless Rigid Body Formulation to Computational Flexible Multibody Dynamics
,”
1st ESA Workshop on Multibody Dynamics for Space Applications, ESTEC
,
Noordwijk, NL
.
24.
Panofsky
,
H. A.
, and
Dutton
,
J. A.
,
1984
,
Atmospheric Turbulence: Models and Methods For Engineering Applications
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.