Finding the oscillatory region in the order space is one of the most challenging problems in nonlinear fractional-order systems. This paper proposes a method to find the possible oscillatory region in the order space for a nonlinear fractional-order system. The effectiveness of the proposed method in finding the oscillatory region and special order sets placed in its boundary is confirmed by presenting some examples.

References

References
1.
Guyomar
,
D.
,
Ducharne
,
B.
, and
Sebald
,
G.
,
2010
, “
The Use of Fractional Derivation in Modeling Ferroelectric Dynamic Hysteresis Behavior Over Large Frequency Bandwidth
,”
J. Appl. Phys.
,
107
(
11
), p.
114108
.10.1063/1.3393814
2.
Ionescu
,
C. M.
,
Machado
,
J. A. T.
, and
De Keyser
,
R.
,
2011
, “
Modeling of the Lung Impedance Using a Fractional-Order Ladder Network With Constant Phase Elements
,”
IEEE Trans. Biomed. Circuits Syst.
,
5
(
1
), pp.
83
89
.10.1109/TBCAS.2010.2077636
3.
Gabano
,
J. D.
,
Poinot
,
T.
, and
Kanoun
,
H.
,
2011
, “
Identification of a Thermal System Using Continuous Linear Parameter-Varying Fractional Modelling
,”
Control Theory Appl.
,
5
(
7
), pp.
889
899
.10.1049/iet-cta.2010.0222
4.
Coussot
,
C.
,
Kalyanam
,
S.
,
Yapp
,
R.
, and
Insana
,
M.
,
2009
, “
Fractional Derivative Models for Ultrasonic Characterization of Polymer and Breast Tissue Viscoelasticity
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
56
(
4
), pp.
715
726
.10.1109/TUFFC.2009.1094
5.
Narang
,
A.
,
Shah
,
S. L.
, and
Chen
,
T.
,
2011
, “
Continuous-Time Model Identification of Fractional-Order Models With Time Delays
,”
Control Theory Appl.
,
5
(
7
), pp.
900
912
.10.1049/iet-cta.2010.0718
6.
Efe
,
M.
,
2011
, “
Fractional-Order Systems in Industrial Automation—A Survey
,”
IEEE Trans. Ind. Inf.
,
7
, pp.
582
591
.10.1109/TII.2011.2166775
7.
Tavazoei
,
M. S.
,
Haeri
,
M.
,
Jafari
,
S.
,
Bolouki
,
S.
, and
Siami
,
M.
,
2008
, “
Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations
,”
IEEE Trans. Ind. Electron.
,
55
(
11
), pp.
4094
4101
.10.1109/TIE.2008.925774
8.
Tavazoei
,
M. S.
,
2012
, “
From Traditional to Fractional PI Control: A Key for Generalization
,”
IEEE Ind. Electron. Mag.
,
6
(
3
), pp.
41
51
.10.1109/MIE.2012.2207818
9.
Tavakoli-Kakhki
,
M.
,
Haeri
,
M.
, and
Tavazoei
,
M. S.
,
2010
, “
Simple Fractional-Order Model Structures and Their Applications in Control System Design
,”
Eur.J. Control
,
6
, pp.
680
694
.10.3166/ejc.16.680-694
10.
Monje
,
C. A.
,
Vinagre
,
B. M.
,
Feliu
,
V.
, and
Chen
,
Y. Q.
,
2008
, “
Tuning and Auto-Tuning of Fractional-Order Controllers for Industry Applications
,”
Control Eng. Pract.
,
16
(
7
), pp.
798
812
.10.1016/j.conengprac.2007.08.006
11.
Ortigueira
,
M. D.
,
2010
, “
On the Fractional Linear Scale Invariant Systems
,”
IEEE Trans. Signal Process.
,
58
(
12
), pp.
6406
6410
.10.1109/TSP.2010.2077633
12.
Tavazoei
,
M. S.
,
2011
, “
On Monotonic and Nonmonotonic Step Responses in Fractional-Order Systems
,”
IEEE Trans. Circuits Syst., II: Express Briefs
,
58
(
7
), pp.
447
451
.10.1109/TCSII.2011.2158258
13.
Kaczorek
,
T.
,
2011
, “
Positive Linear Systems Consisting of n Subsystems With Different Fractional-Orders
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
,
58
(
6
), pp.
1203
1210
.10.1109/TCSI.2010.2096111
14.
Tavakoli-Kakhki
,
M.
,
Haeri
,
M.
, and
Tavazoei
,
M. S.
,
2010
, “
Over and Under Convergent Step Responses in Fractional-Order Transfer Functions
,”
Trans. Inst. Meas. Control (London)
,
32
, pp.
376
394
.10.1177/0142331209356157
15.
Tavazoei
,
M. S.
,
2010
, “
Notes on Integral Performance Indices in Fractional-Order Control Systems
,”
J. Process Control
,
20
, pp.
285
291
.10.1016/j.jprocont.2009.09.005
16.
Ahmad
,
W.
,
El-Khazali
,
R.
, and
El-Wakil
,
A.
,
2001
, “
Fractional-Order Wien-Bridge Oscillator
,”
Electron. Lett.
,
37
, pp.
1110
1112
.10.1049/el:20010756
17.
Gafiychuk
,
V.
,
Datsko
,
B.
, and
Meleshko
,
V.
,
2008
, “
Analysis of Fractional-Order Bonhoeffer–Van der Pol Oscillator
,”
Physica A
,
387
, pp.
418
424
.10.1016/j.physa.2007.09.006
18.
Gafiychuk
,
V.
, and
Datsko
,
B.
,
2008
, “
Stability Analysis and Limit Cycle in Fractional System With Brusselator Nonlinearities
,”
Phys. Lett. A
,
372
, pp.
4902
4904
.10.1016/j.physleta.2008.05.045
19.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Regular Oscillations or Chaos in a Fractional-Order System With any Effective Dimension
,”
Nonlinear Dyn.
,
54
, pp.
213
222
.10.1007/s11071-007-9323-1
20.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammer
,
H. K.
,
1995
, “
Chaos in a Fractional-Order Chua's System
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
42
, pp.
485
490
.10.1109/81.404062
21.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2007
, “
A Necessary Condition for Double Scroll Attractor Existence in Fractional-Order Systems
,”
Phys. Lett. A
,
367
(
1–2
), pp.
102
113
.10.1016/j.physleta.2007.05.081
22.
Datsko
,
B. Y.
, and
Gafiychuk
,
V. V.
,
2011
, “
Chaotic Dynamics in Bonhoffer–Van der Pol Fractional Reaction–Diffusion System
,”
Signal Process.
,
91
, pp.
452
460
.10.1016/j.sigpro.2010.04.004
23.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2009
, “
A Proof for Nonexistence of Periodic Solutions in Time Invariant Fractional-Order Systems
,”
Automatica
,
45
, pp
1886
1890
.10.1016/j.automatica.2009.04.001
24.
Tavazoei
,
M. S.
,
2010
, “
A Note on Fractional-Order Derivatives of Periodic Functions
,”
Automatica
,
46
, pp.
945
948
.10.1016/j.automatica.2010.02.023
25.
Tavazoei
,
M. S.
,
Haeri
,
M.
,
Siami
,
M.
, and
Bolouki
,
S.
,
2010
, “
Maximum Number of Frequencies in Oscillations Generated by Fractional-Order LTI Systems
,”
IEEE Trans. Signal Process.
,
58
, pp.
4003
4012
.10.1109/TSP.2010.2049568
26.
Tavazoei
,
M. S.
,
Haeri
M.
, and
Nazari
,
N.
,
2008
, “
Analysis of Undamped Oscillations Generated by Marginally Stable Fractional-Order Systems
,”
Signal Process.
,
88
(
12
), pp.
2971
2978
.10.1016/j.sigpro.2008.07.002
27.
Deng
,
W.
, and
Li
,
C.
,
2008
, “
The Evolution of Chaotic Dynamics for Fractional Unified System
,”
Phys. Lett. A
,
372
,
401
407
.10.1016/j.physleta.2007.07.049
28.
Chen
,
W. C.
,
2008
, “
Nonlinear Dynamics and Chaos in a Fractional-Order Financial System
,”
Chaos, Solitons Fractals
,
36
(
5
), pp.
1305
1314
.10.1016/j.chaos.2006.07.051
29.
Sheu
,
L. J.
,
Chen
,
H. K.
,
Chen
,
J. H.
,
Tam
,
L. M.
,
Chen
,
W. C.
,
Lin
,
K. T.
, and
Kang
Y.
,
2008
, “
Chaos in the Newton-Leipnik System With Fractional-Order
,”
Chaos, Solitons Fractals
,
36
(
1
), pp.
98
103
.10.1016/j.chaos.2006.06.013
30.
Chen
,
J. H.
, and
Chen
,
W. C.
,
2008
, “
Chaotic Dynamics of the Fractionally Damped Van der Pol Equation
,”
Chaos, Solitons Fractals
,
35
(
1
), pp.
188
198
.10.1016/j.chaos.2006.05.010
31.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Chaotic Attractors in Incommensurate Fractional-Order Systems
,”
Physica D
,
237
, pp.
2628
2637
.10.1016/j.physd.2008.03.037
32.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
San Diego
.
33.
Wang
,
Y.
, and
Li
,
C.
,
2007
, “
Does the Fractional Brusselator With Efficient Dimension Less Than 1 Have a Limit Cycle?
,”
Phys. Lett. A
,
363
, pp.
414
419
.10.1016/j.physleta.2006.11.038
34.
Daftardar-Gejji
,
V.
, and
Jafari
,
H.
,
2007
, “
Analysis of a System of Nonautonomous Fractional Differential Equations Involving Caputo Derivatives
,”
J. Math.Anal. Appl.
,
328
, pp.
1026
1033
.10.1016/j.jmaa.2006.06.007
35.
Linz
,
S. J.
,
2000
, “
No-Chaos Criteria for Certain Jerky Dynamics
,”
Phys. Lett. A
,
275
, pp.
204
210
.10.1016/S0375-9601(00)00576-4
36.
Kreyszig
,
E.
,
2006
,
Advanced Engineering Mathematics
,
9th ed.
,
John Wiley and Sons
,
New York
.
37.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
Computational Engineering in Systems Applications, IMACS, IEEE-SMC Proceedings
, Lille, France, July, Vol.
2
, pp.
963
968
.
38.
Bonnet
,
C.
, and
Partington
,
J. R.
,
2000
, “
Coprime Factorizations and Stability of Fractional Differential Systems
,”
Syst. Control Lett.
,
41
, pp.
167
174
.10.1016/S0167-6911(00)00050-5
39.
Ahlfors
,
L. V.
,
1966
,
Complex Analysis
,
2nd ed.
,
McGraw-Hill
,
New York
.
40.
Wiggins
,
S.
,
2003
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer-Verlag
,
New York
.
41.
Li
,
C.
, and
Chen
,
G.
,
2004
, “
Chaos and Hyperchaos in the Fractional-Order Rössler Equations
,”
Physica A
,
341
, pp.
55
61
.10.1016/j.physa.2004.04.113
42.
Tavakoli-Kakhki
,
M.
,
Haeri
,
M.
, and
Tavazoei
,
M. S.
,
2011
, “
Notes on the State Space Realizations of Rational Order Transfer Functions
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
,
58
, pp.
1099
1108
.10.1109/TCSI.2010.2090568
43.
Petras
,
I.
,
2010
, “
Fractional-Order Memristor-Based Chua's Circuit
,”
IEEE Trans. Circuits Syst., II:Express Briefs
,
57
, pp.
975
979
.10.1109/TCSII.2010.2083150
44.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
, pp.
3
22
.10.1023/A:1016592219341
45.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2007
, “
Unreliability of Frequency-Domain Approximation in Recognizing Chaos in Fractional-Order Systems
,”
IET Signal Process.
,
1
(
4
), pp.
171
181
.
46.
Spasic
,
A. M.
, and
Lazarevic
,
M. P.
,
2005
, “
Electroviscoelasticity of Liquid/Liquid Interfaces: Fractional-Order Model
,”
J. Colloid Interface Sci.
,
282
, pp.
223
230
.10.1016/j.jcis.2004.08.113
47.
Spasic
,
A. M.
, and
Lazarevic
,
M. P.
,
2007
, “
A New Approach to the Phenomena at the Interfaces of Finely Dispersed Systems
,”
J. Colloid Interface Sci.
,
316
, pp.
984
995
.10.1016/j.jcis.2007.07.051
48.
Barbosa
,
R. S.
,
Machado
,
J. A. T.
,
Vingare
,
B. M.
, and
Calderon
,
A. J.
,
2007
, “
Analysis of the Van der Pol Oscillator Containing Derivatives of Fractional-Order
,”
J. Vib. Control
,
13
(
9–10
), pp.
1291
1301
.10.1177/1077546307077463
49.
Tavazoei
,
M. S.
,
Haeri
,
M.
,
Attari
,
M.
,
Bolouki
,
S.
, and
Siami
,
M.
,
2009
, “
More Details on Analysis of Fractional-Order Van der Pol Oscillator
,”
J. Vib. Control
,
15
(
6
), pp.
803
819
.10.1177/1077546308096101
50.
Radwan
,
A. G.
,
El-Wakil
,
A. S.
, and
Soliman
,
A. M.
,
2008
, “
Fractional-Order Sinusoidal Oscillators: Design Procedure and Practical Examples
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
,
55
(
7
), pp.
2051
2063
.10.1109/TCSI.2008.918196
51.
Chen
,
G.
, and
Ueta
,
T.
,
1999
, “
Yet Another Attractor
,”
Int. J. Bifurcation Chaos
,
9
, pp.
1465
1466
.10.1142/S0218127499001024
52.
Tavazoei
,
M. S.
,
Haeri
,
M.
, and
Jafari
,
S.
,
2008
, “
Fractional Controller to Stabilize Fixed Points of Uncertain Chaotic Systems: Theoretical and Experimental Study
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
222
(
3
), pp.
175
184
.10.1243/09596518JSCE481
53.
Biswas
,
K.
,
Sen
,
S.
, and
Dutta
,
P. K.
,
2006
, “
Realization of a Constant Phase Element and its Performance Study in a Differentiator Circuit
,”
IEEE Trans. Circuits Syst.,II: Express Briefs.
53
, pp.
802
806
.10.1109/TCSII.2006.879102
54.
Jesus
,
I. S.
, and
Machado
,
J. A. T.
,
2009
, “
Development of Fractional-Order Capacitors Based on Electrolyte Processes
,”
Nonlinear Dyn.
,
56
, pp.
45
55
.10.1007/s11071-008-9377-8
55.
Mondal
,
D.
, and
Biswas
,
K.
,
2011
, “
Performance Study of Fractional-Order Integrator Using Single-Component Fractional-Order Element
,”
Circuits Devices Syst.
,
5
(
4
), pp.
334
342
.10.1049/iet-cds.2010.0366
You do not currently have access to this content.