We study the synchronization of two rotating pendula mounted on a horizontal beam, which can roll on the parallel surface. The pendula are forced to rotate by different driving torques. It has been shown that after a transient two different types of synchronization between the pendula can be observed. The approximate analytical methods allow us to derive the synchronization conditions and explain the observed types of synchronous configurations. The energy balance in the system allows us to show how the energy is transferred between the pendula via the oscillating beam.
Issue Section:
Research Papers
References
1.
Leven
, R. W.
, and Koch
, B. P.
, 1981
, “Chaotic Behavior of a Parametrically Excited Damped Pendulum
,” Phys. Lett. A
, 86
, pp. 71
–74
.10.1016/0375-9601(81)90167-52.
Mann
, B. P.
, and Koplow
, M. A.
, 2006
, “Symmetry Breaking Bifurcations of a Parametrically Excited Pendulum
,” Nonlinear Dyn.
, 46
, pp. 427
–437
.10.1007/s11071-006-9033-03.
Koch
, B. P.
, and Leven
, R. W.
, 1985
, “Subharmonic and Homoclinic Bifurcations in a Parametrically Forced Pendulum
,” Physica D
, 16
, pp. 1
–13
.10.1016/0167-2789(85)90082-X4.
Sudor
, D.
, and Bishop
, S. R.
, 1999
, “Inverted Dynamics of a Tilted Pendulum
,” Eur. J. Mech. A/Solids
, 18
, pp. 517
–526
.10.1016/S0997-7538(99)00135-75.
Szemplinska-Stupnicka
, W.
, Tyrkiel
, E.
, and Zubrzycki
, A.
, 2000
, “The Global Bifurcations That Lead to Transient Tumbling Chaos in a Parametrically Driven Pendulum
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
, 10
, pp. 2161
–2175
.10.1142/S02181274000013656.
Szemplinska-Stupnicka
, W.
, and Tyrkiel
, E.
, 2002
, “The Oscillation-Rotation Attractors in the Forced Pendulum and Their Peculiar Properties
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
, 12
, pp. 159
–168
.10.1142/S02181274020042317.
Yabuno
, H.
, Miura
, M.
, and Aoshima
, N.
, 2004
, “Bifurcation in an Inverted Pendulum With Tilted High Frequency Excitation: Analytical and Experimental Investigations on the Symmetry-Breaking of the Bifurcation
,” J. Sound Vib.
, 273
, pp. 479
–513
.10.1016/S0022-460X(03)00507-88.
Capecchi
, D.
, and Bishop
, S. R.
, 1994
, “Periodic Oscillations and Attracting Basins for a Parametrically Excited Pendulum
,” Dyn. Stab. Syst.
, 9
, pp. 123
–143
.10.1080/026811194088061729.
Clifford
, M. J.
, and Bishop
, S. R.
, 1995
, “Rotating Periodic Orbits of the Parametrically Excited Pendulum
,” Phys. Lett. A
, 201
, pp. 191
–196
.10.1016/0375-9601(95)00255-210.
Lenci
, S.
, and Rega
, G.
, 2008
, “Competing Dynamic Solutions in a Parametrically Excited Pendulum: Attractor Robustness and Basin Integrity
,” ASME J. Comput. Nonlinear Dyn.
, 3
(4
), p. 041010
.10.1115/1.296046811.
Lenci
, S.
, Pavlovskaia
, E.
, Rega
, G.
, and Wiercigroch
, M.
, 2008
, “Rotating Solutions and Stability of Parametric Pendulum by Perturbation Method
,” J. Sound Vib.
, 310
, pp. 243
–259
.10.1016/j.jsv.2007.07.06912.
Xu
, X.
, Wiercigroch
, M.
, and Cartmell
, M. P.
, 2005
, “Rotating Orbits of a Parametrically-Excited Pendulum
,” Chaos, Solitons Fractals
, 23
, pp. 1537
–1548
.10.1016/j.chaos.2004.06.05313.
Xu
, X.
, Pavlovskaia
, E.
, Wiercigroch
, M.
, Romeo
, F.
, and Lenci
, S.
, 2007
, “Dynamic Interactions Between Parametric Pendulum and Electro-Dynamical Shaker
,” ZAMM
, 87
, pp. 172
–186
.10.1002/zamm.20061031114.
Xu
, X.
, and Wiercigroch
, M.
, 2007
, “Approximate Analytical Solutions for Oscillatory and Rotational Motion of a Parametric Pendulum
, Nonlinear Dyn.
, 47
, pp. 311
–320
.10.1007/s11071-006-9074-415.
Huygens
, C.
, 1665
, “Letter to de Sluse
,” Oeuveres Completes de Christian Huygens (letters; no. 133 of 24 February 1665, no. 1335 of 26 February 1665, no. 1345 of 6 March 1665)
, Societe Hollandaise DesSciences
, The Hague, The Netherlands
.16.
Pantaleone
, J.
, 2002
, “Synchronization of Metronomes
,” Am. J. Phys.
, 70
, pp. 992
–1000
.10.1119/1.150111817.
Ulrichs
, H.
, Mann
, A.
, and Parlitz
, U.
, 2009
, “Synchronization and Chaotic Dynamics of Coupled Mechanical Metronomes
,” Chaos
, 19
, p. 043120
.10.1063/1.326692418.
Perlikowski
, P.
, Kapitaniak
, M.
, Czolczynski
, K.
, Stefanski
, A.
, and Kapitaniak
, T.
, 2012
, “Chaos in Coupled Clocks
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
, 22
, 1250288
.10.1142/S021812741250288419.
Czolczynski
, K.
, Perlikowski
, P.
, Stefanski
, A.
, and Kapitaniak
, T.
, 2009
, “Clustering and Synchronization of Huygens' Clocks
,” Physica A
, 388
, pp. 5013
–5023
.10.1016/j.physa.2009.08.03320.
Kapitaniak
, M.
, Czolczynski
, K.
, Perlikowski
, P.
, Stefanski
, A.
, and Kapitaniak
, T.
, 2012
, “Synchronization of Clocks
,” Phys. Rep.
, 517
, pp. 1
–69
.10.1016/j.physrep.2012.03.00221.
Kapitaniak
, M.
, Brzeski
, P.
, Czolczynski
, K.
, Perlikowski
, P.
, Stefanski
, A.
, and Kapitaniak
, T.
, 2012
, “Synchronization Thresholds of Coupled Self-Excited Nonidentical Pendula Suspended on the Vertically Displacing Beam
,” Prog. Theor. Phys.
, 128
, pp. 1141
–1173
.10.1143/PTP.128.114122.
Blekhman
, I. I.
, 1988
, Synchronization in Science and Technology
, ASME Press
, New York
.23.
Czolczynski
, K.
, Perlikowski
, P.
, Stefanski
, A.
, and Kapitaniak
, T.
, 2012
, “Synchronization of Slowly Rotating Pendulums
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
, 22
, p. 1250128
.10.1142/S021812741250128324.
Czolczynski
, K.
, Perlikowski
, P.
, Stefanski
, A.
, and Kapitaniak
, T.
, 2012
, “Synchronization of Pendula Rotating in Different Directions
,” Commun. Nonlinear Sci. Numer. Simul.
, 17
, pp. 3658
–3672
.10.1016/j.cnsns.2012.01.014Copyright © 2014 by ASME
You do not currently have access to this content.