We study the synchronization of two rotating pendula mounted on a horizontal beam, which can roll on the parallel surface. The pendula are forced to rotate by different driving torques. It has been shown that after a transient two different types of synchronization between the pendula can be observed. The approximate analytical methods allow us to derive the synchronization conditions and explain the observed types of synchronous configurations. The energy balance in the system allows us to show how the energy is transferred between the pendula via the oscillating beam.

References

1.
Leven
,
R. W.
, and
Koch
,
B. P.
,
1981
, “
Chaotic Behavior of a Parametrically Excited Damped Pendulum
,”
Phys. Lett. A
,
86
, pp.
71
74
.10.1016/0375-9601(81)90167-5
2.
Mann
,
B. P.
, and
Koplow
,
M. A.
,
2006
, “
Symmetry Breaking Bifurcations of a Parametrically Excited Pendulum
,”
Nonlinear Dyn.
,
46
, pp.
427
437
.10.1007/s11071-006-9033-0
3.
Koch
,
B. P.
, and
Leven
,
R. W.
,
1985
, “
Subharmonic and Homoclinic Bifurcations in a Parametrically Forced Pendulum
,”
Physica D
,
16
, pp.
1
13
.10.1016/0167-2789(85)90082-X
4.
Sudor
,
D.
, and
Bishop
,
S. R.
,
1999
, “
Inverted Dynamics of a Tilted Pendulum
,”
Eur. J. Mech. A/Solids
,
18
, pp.
517
526
.10.1016/S0997-7538(99)00135-7
5.
Szemplinska-Stupnicka
,
W.
,
Tyrkiel
,
E.
, and
Zubrzycki
,
A.
,
2000
, “
The Global Bifurcations That Lead to Transient Tumbling Chaos in a Parametrically Driven Pendulum
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
10
, pp.
2161
2175
.10.1142/S0218127400001365
6.
Szemplinska-Stupnicka
,
W.
, and
Tyrkiel
,
E.
,
2002
, “
The Oscillation-Rotation Attractors in the Forced Pendulum and Their Peculiar Properties
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
12
, pp.
159
168
.10.1142/S0218127402004231
7.
Yabuno
,
H.
,
Miura
,
M.
, and
Aoshima
,
N.
,
2004
, “
Bifurcation in an Inverted Pendulum With Tilted High Frequency Excitation: Analytical and Experimental Investigations on the Symmetry-Breaking of the Bifurcation
,”
J. Sound Vib.
,
273
, pp.
479
513
.10.1016/S0022-460X(03)00507-8
8.
Capecchi
,
D.
, and
Bishop
,
S. R.
,
1994
, “
Periodic Oscillations and Attracting Basins for a Parametrically Excited Pendulum
,”
Dyn. Stab. Syst.
,
9
, pp.
123
143
.10.1080/02681119408806172
9.
Clifford
,
M. J.
, and
Bishop
,
S. R.
,
1995
, “
Rotating Periodic Orbits of the Parametrically Excited Pendulum
,”
Phys. Lett. A
,
201
, pp.
191
196
.10.1016/0375-9601(95)00255-2
10.
Lenci
,
S.
, and
Rega
,
G.
,
2008
, “
Competing Dynamic Solutions in a Parametrically Excited Pendulum: Attractor Robustness and Basin Integrity
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041010
.10.1115/1.2960468
11.
Lenci
,
S.
,
Pavlovskaia
,
E.
,
Rega
,
G.
, and
Wiercigroch
,
M.
,
2008
, “
Rotating Solutions and Stability of Parametric Pendulum by Perturbation Method
,”
J. Sound Vib.
,
310
, pp.
243
259
.10.1016/j.jsv.2007.07.069
12.
Xu
,
X.
,
Wiercigroch
,
M.
, and
Cartmell
,
M. P.
,
2005
, “
Rotating Orbits of a Parametrically-Excited Pendulum
,”
Chaos, Solitons Fractals
,
23
, pp.
1537
1548
.10.1016/j.chaos.2004.06.053
13.
Xu
,
X.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
,
Romeo
,
F.
, and
Lenci
,
S.
,
2007
, “
Dynamic Interactions Between Parametric Pendulum and Electro-Dynamical Shaker
,”
ZAMM
,
87
, pp.
172
186
.10.1002/zamm.200610311
14.
Xu
,
X.
, and
Wiercigroch
,
M.
,
2007
, “
Approximate Analytical Solutions for Oscillatory and Rotational Motion of a Parametric Pendulum
,
Nonlinear Dyn.
,
47
, pp.
311
320
.10.1007/s11071-006-9074-4
15.
Huygens
,
C.
,
1665
, “
Letter to de Sluse
,”
Oeuveres Completes de Christian Huygens (letters; no. 133 of 24 February 1665, no. 1335 of 26 February 1665, no. 1345 of 6 March 1665)
,
Societe Hollandaise DesSciences
,
The Hague, The Netherlands
.
16.
Pantaleone
,
J.
,
2002
, “
Synchronization of Metronomes
,”
Am. J. Phys.
,
70
, pp.
992
1000
.10.1119/1.1501118
17.
Ulrichs
,
H.
,
Mann
,
A.
, and
Parlitz
,
U.
,
2009
, “
Synchronization and Chaotic Dynamics of Coupled Mechanical Metronomes
,”
Chaos
,
19
, p.
043120
.10.1063/1.3266924
18.
Perlikowski
,
P.
,
Kapitaniak
,
M.
,
Czolczynski
,
K.
,
Stefanski
,
A.
, and
Kapitaniak
,
T.
,
2012
, “
Chaos in Coupled Clocks
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
22
,
1250288
.10.1142/S0218127412502884
19.
Czolczynski
,
K.
,
Perlikowski
,
P.
,
Stefanski
,
A.
, and
Kapitaniak
,
T.
,
2009
, “
Clustering and Synchronization of Huygens' Clocks
,”
Physica A
,
388
, pp.
5013
5023
.10.1016/j.physa.2009.08.033
20.
Kapitaniak
,
M.
,
Czolczynski
,
K.
,
Perlikowski
,
P.
,
Stefanski
,
A.
, and
Kapitaniak
,
T.
,
2012
, “
Synchronization of Clocks
,”
Phys. Rep.
,
517
, pp.
1
69
.10.1016/j.physrep.2012.03.002
21.
Kapitaniak
,
M.
,
Brzeski
,
P.
,
Czolczynski
,
K.
,
Perlikowski
,
P.
,
Stefanski
,
A.
, and
Kapitaniak
,
T.
,
2012
, “
Synchronization Thresholds of Coupled Self-Excited Nonidentical Pendula Suspended on the Vertically Displacing Beam
,”
Prog. Theor. Phys.
,
128
, pp.
1141
1173
.10.1143/PTP.128.1141
22.
Blekhman
,
I. I.
,
1988
,
Synchronization in Science and Technology
,
ASME Press
,
New York
.
23.
Czolczynski
,
K.
,
Perlikowski
,
P.
,
Stefanski
,
A.
, and
Kapitaniak
,
T.
,
2012
, “
Synchronization of Slowly Rotating Pendulums
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
22
, p.
1250128
.10.1142/S0218127412501283
24.
Czolczynski
,
K.
,
Perlikowski
,
P.
,
Stefanski
,
A.
, and
Kapitaniak
,
T.
,
2012
, “
Synchronization of Pendula Rotating in Different Directions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
, pp.
3658
3672
.10.1016/j.cnsns.2012.01.014
You do not currently have access to this content.