Forward dynamic simulations of a periodic forearm motion were developed in order to explore the efficiency of using a Fourier-series-based parameterization function for muscle excitations within dynamic optimization. The specific objectives of this study were to develop such a simulation and validate the predictions. Several time-integral objective functions, including muscle activation effort and metabolic energy, were used to see the effects of each on the optimal results. For validation, the motion and muscle electromyograms (EMGs) of three adult subjects were captured, where each trial was replicated twice. Fourier-series pattern parameterization was found to be an efficient choice for the muscle excitations in simulating human musculoskeletal dynamics.

References

References
1.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
,
1992
, “
A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems
,”
ASME J. Biomech. Eng.
,
114
(
4
), pp.
450
460
.10.1115/1.2894094
2.
Anderson
,
F. C.
and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
3.
Rasmussen
,
J.
,
Damsgaard
,
M.
, and
Voigt
,
M.
,
2001
, “
Muscle Recruitment by the Min/Max Criterion a Comparative Numerical Study
,”
J. Biomech.
,
34
(
3
), pp.
409
415
.10.1016/S0021-9290(00)00191-3
4.
Crowninshield
,
R. D.
and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.10.1016/0021-9290(81)90035-X
5.
Kuo
,
A. D.
,
2002
, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
113
120
.10.1115/1.1427703
6.
Millard
,
M.
,
McPhee
,
J.
, and
Kubica
,
E.
,
2009
, “
Multi-Step Forward Dynamic Gait Simulation
,”
Multibody Dynamics: Computational Methods and Applications
, Vol.
12
,
C.
Bottasso
, ed.,
Springer
,
Netherlands
, pp.
25
43
.
7.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
8.
Ackermann
,
M.
,
2007
, “
Dynamics and Energetics of Walking With Prostheses
,” Ph.D. thesis, University of Stuttgart, Stuttgart.
9.
Peasgood
,
M.
,
Kubica
,
E.
, and
McPhee
,
J.
,
2007
, “
Stabilization of a Dynamic Walking Gait Simulation
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
65
72
.10.1115/1.2389230
10.
Betts
,
J.
,
2001
,
Practical Methods for Optimal Control Using Nonlinear Programming
,
SIAM
,
Philadelphia
.
11.
Chachuat
,
B. C.
,
2007
,
Nonlinear and Dynamic Optimization: From Theory to Practice
,
Automatic Control Laboratory, EPFL
,
Switzerland
.
12.
Sharif Shourijeh
,
M.
,
2013
, “
Optimal Control and Multibody Dynamic Modelling of Human Musculoskeletal Systems
,” Ph.D. thesis, University of Waterloo, Canada.
13.
Sharif Shourijeh
,
M.
,
McPhee
,
J.
, and
Wells
,
R.
,
2010
, “
A Model for Forward Dynamic Simulation of Rapid Tapping Motion of Index Finger
,” Canadian Society for Biomechanics, Kingston, Canada.
14.
Sharif Shourijeh
,
M.
and
McPhee
,
J.
,
2012
, “
Dynamic Optimization of Human Forearm Simulations by Parameterizing the Muscle Excitations
,” Canadian Society for Biomechanics, Burnaby, Canada.
15.
Happee
,
R.
and
Van der Helm
,
F. C. T.
,
1995
, “
The Control of Shoulder Muscles During Goal Directed Movements, an Inverse Dynamic Analysis
,”
J. Biomech.
,
28
(
10
), pp.
1179
1191
.10.1016/0021-9290(94)00181-3
16.
Thelen
,
D. G.
and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.10.1016/j.jbiomech.2005.02.010
17.
Ackermann
,
M.
and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.10.1016/j.jbiomech.2009.12.012
18.
Umberger
,
B. R.
,
Gerritsen
,
K. G.
, and
Martin
,
P. E.
,
2003
, “
A Model of Human Muscle Energy Expenditure
,”
Comput. Methods Biomech. Biomed. Eng.
,
6
(
2
), pp.
99
111
.10.1080/1025584031000091678
19.
Winter
,
D. A.
,
2005
,
Biomechanics and Motor Control of Human Movement
,
3rd ed.
,
John Wiley and Sons
,
New York
.
20.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.10.1115/1.1531112
21.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2001
, “
Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
, pp.
93
126
.10.1080/10255840008908000
22.
Murray
,
W. M.
,
Delp
,
S. L.
, and
Buchanan
,
T. S.
,
1995
, “
Variation of Muscle Moment Arms With Elbow and Forearm Position
,”
J. Biomech.
,
28
(
5
), pp.
513
525
.10.1016/0021-9290(94)00114-J
23.
Raasch
,
C. C.
,
Zajac
,
F. E.
,
Ma
,
B.
, and
Levine
,
W. S.
,
1997
, “
Muscle Coordination of Maximum Speed Pedaling
,”
J. Biomech.
,
30
(
6
), pp.
595
602
.10.1016/S0021-9290(96)00188-1
24.
Winters
,
J. M.
, and
Stark
,
L.
,
1988
, “
Estimated Mechanical Properties of Synergistic Muscles Involved in Movements of a Variety of Human Joints
,”
J. Biomech.
,
21
(
12
), pp.
1027
1041
.10.1016/0021-9290(88)90249-7
25.
Erdemir
,
A.
, and
Piazza
,
S. J.
,
2004
, “
Changes in Foot Loading Following Plantar Fasciotomy: A Computer Modeling Study
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
237
243
.10.1115/1.1691447
26.
Elia
,
M.
,
1992
, “
Organ and Tissue Contribution to Metabolic Rate
,”
Energy Metabolism: Tissue Determinants and Cellular Corollaries
,
J. M.
Kinney
, and
H. N.
Tucker
, eds.,
Raven
,
New York
, pp.
61
77
.
You do not currently have access to this content.