The dynamic behavior of aeroelastic systems is governed by a complex interaction among inertial, elastic, and aerodynamic forces. To prevent system instability, the interaction among these forces must be properly understood. Accordingly, the present study utilizes the differential transformation method (DTM) to examine the nonlinear dynamic response of a typical aeroelastic system (an aircraft wing) under realistic operating parameters. The system behavior and onset of chaos are interpreted by means of bifurcation diagrams, Poincaré maps, power spectra, and maximum Lyapunov exponent plots. The results reveal the existence of a complex dynamic behavior comprising periodic, quasi-periodic and chaotic responses. It is shown that chaotic motion occurs at specific intervals for different trailing edge and leading edge angles with changing initial conditions. The results presented in this study provide a useful guideline for the design of aircraft wings and confirm the validity of the DTM method as a design and analysis tool for aeroelastic systems in general.

References

References
1.
Block
,
J. J.
, and
Strganac
,
T. W.
,
1998
, “
Applied Active Control for a Nonlinear Aeroelastic Structure
,”
J. Guidance Control Dyn.
,
21
(
6
), pp.
838
845
.10.2514/2.4346
2.
Palaniappan
,
K.
,
Sahu
,
P.
,
Alonso
,
J. J.
, and
Jameson
,
A.
,
2009
, “
Design of Adjoint Based Laws For Wing Flutter Control
,”
presented at the 47th AIAA Aerospace Sciences Meeting and Exhibit
,
Orlando, Florida
January, Paper No. AIAA 2009-148.
3.
Golubev
,
V. V.
,
Dreyer
,
B. D.
, and
Hollenshade
,
T. M.
,
2009
, “
High-Accuracy Viscous Simulations of Gust-Airfoil Nonlinear Aeroelastic Interaction
,”
presented at the 39th AIAA Fluid Dynamics Conference
,
San Antonio, Texas
, June.
4.
Tharayil
,
M. L.
, and
Alleyne
,
A. G.
,
2004
, “
Modeling and Control for Smart Mesoflap Aeroelastic Control
,”
IEEE/ASME Trans. Mechatronics
,
9
, pp.
30
39
.10.1109/TMECH.2004.823852
5.
Wu
,
H. Y.
,
Sun
,
D.
, and
Zhou
,
Z. Y.
,
2004
, “
Micro Air Vehicle: Configuration, Analysis, Fabrication, and Test
,”
IEEE/ASME Trans. Mechatronics
,
9
, pp.
108
117
.10.1109/TMECH.2004.823885
6.
Madangopal
,
R.
,
Zaeem
,
A. K.
, and
Agrawal
,
S. K.
,
2006
, “
Energetics-Based Design of Small Flapping-Wing Micro Air Vehicles
,”
IEEE/ASME Trans. Mechatronics
,
11
, pp.
433
438
.10.1109/TMECH.2006.878525
7.
Arabagi
,
V.
,
Hines
,
L.
, and
Sitti
,
M.
,
2012
, “
A Simulation and Design Tool for a Passive Rotation Flapping Wing Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
99
, pp.
1
12
.10.1109/TMECH. 2012.2185707
8.
Zhao
,
L. C.
, and
Yang
,
Z. C.
,
1990
, “
Chaotic Motions of an Airfoil W\With Nonlinear Stiffness in Incompressible Flow
,”
J. Sound Vib.
,
128
(
2
), pp.
245
254
.10.1016/0022-460X(90)90541-7
9.
O'Neill
,
T.
, and
Strganac
,
T. W.
,
1998
, “
Aeroelastic Response of a Rigid Wing Supported by Nonlinear Spring
,”
J. Aircr.
,
35
(
4
), pp.
616
622
.10.2514/2.2345
10.
Strganac
,
T. W.
,
Ko
,
J.
, and
Thompson
,
D. E.
,
2000
, “
Identification and Control of Limit Cycle Oscillations in Aeroelastic Systems
,”
J. Guidance Control Dyn.
,
23
(
6
), pp.
1127
1133
.10.2514/2.4664
11.
Gujjula
,
S.
,
Singh
,
S. N.
, and
Yim
,
W.
,
2005
, “
Adaptive and Neural Control of a Wing Section Using Leading-Edge and Trailing-Edge Surfaces
,”
Aerosp. Sci. Technol.
,
9
, pp.
161
171
.10.1016/j.ast.2004.10.003
12.
Zhang
,
C. W.
,
2008
, “
Application of Sliding Mode Control to Aeroelastic System, 2008
,” M.S. thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan.
13.
Wetzel
,
C.
, and
Proppe
,
C.
,
2010
, “
Stochastic Modeling in Multibody Dynamics: Aerodynamic Loads on Ground Vehicles
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031009
.10.1115/1.4001376
14.
Fazelzadeh
,
S. A.
, and
Mazidi
,
A.
,
2011
, “
Nonlinear Aeroelastic Analysis of Bending-Torsion Wings Subjected to a Transverse Follower Force
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031016
.10.1115/1.4003288
15.
Nbendjo
,
B. R., Nana
,
2012
, “
Nonlinear Dynamics of Inverted Pendulum Driven by Airflow
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011013
.10.1115/1.4004963
16.
Wang
,
C. C.
,
Jang
,
M. J.
, and
Yeh
,
Y. L.
,
2007
, “
Bifurcation and Nonlinear Dynamic Analysis of a Flexible Rotor Supported by Relative Short Gas Journal Bearings
,”
Chaos, Solitons Fractals
,
32
, pp.
566
582
.10.1016/j.chaos.2005.10.098
17.
Wang
,
C. C.
,
2008
, “
Theoretical and Nonlinear Behavior Analysis of a Flexible Rotor Supported by a Relatively Short Herringbone-Grooved Gas Journal-Bearing System
,”
Physica D
,
237
, pp.
2282
2295
.10.1016/j.physd.2008.02.004
18.
Wang
,
C. C.
,
2009
, “
Application of a Hybrid Method to the Nonlinear Dynamic Analysis of a Spherical Gas Journal Bearing System
,”
Nonlinear Anal. Theory Methods Appl.
,
70
, pp.
2035
2053
.10.1016/j.na.2008.02.108
19.
Fung
,
Y. C.
,
1955
,
An Introduction to the Theory of Aeroelasticty
,
Wiley
,
New York
.
20.
Theodorsen
,
T.
, and
Garrick
,
I. E.
,
1940
, “
Mechanism of Flutter: A Theoretical and Experiment Investigation of the Flutter Problem
,” NACA Report No. 685.
21.
Zhang
,
W. M.
,
Meng
,
G.
, and
Peng
,
Z. K.
,
2011
, “
Nonlinear Dynamic Analysis of Atomic Force Microscopy Under Bounded Noise Parametric Excitation
,”
IEEE/ASME Trans. Mechatronics
,
16
, pp.
1063
1072
.10.1109/TMECH.2010.2073715
22.
He
,
G. P.
, and
Geng
,
Z. Y.
,
2012
, “
Finite-Time Stabilization of a Comb-Drive Electrostatic Microactuator
,”
IEEE/ASME Trans. Mechatronics
,
17
, pp.
107
115
.10.1109/TMECH.2010.2091965
You do not currently have access to this content.