The implementation of flexible instruments in surgery necessitates high motion and force fidelity and good controllability of the tip. However, the positional accuracy and the force transmission of these instruments are jeopardized by the friction, the clearance, and the inherent compliance of the instrument. The surgical instrument is modeled as a series of interconnected spatial beam elements. The endoscope is modeled as a rigid curved tube. The stiffness, damping, and friction are defined in order to calculate the interaction between the instrument and the tube. The effects of various parameters on the motion and force transmission behavior were studied for the axially-loaded and no-load cases. The simulation results showed a deviation of 1.8% in the estimation of input force compared with the analytical capstan equation. The experimental results showed a deviation on the order of 1.0%. The developed flexible multibody model is able to demonstrate the characteristic behavior of the flexible instrument for both the translational and rotational input motion for a given set of parameters. The developed model will help us to study the effects of various parameters on the motion and force transmission of the instrument.

References

References
1.
Camarillo
,
D. B.
,
Krummel
,
T. M.
, and
Salisbury
,
J. K.
, Jr.
,
2004
, “
Robotic Technology in Surgery: Past, Present, and Future
,”
Am. J. Surg.
,
188
(
4, Suppl.t 1
), pp.
2
15
.10.1016/j.amjsurg.2004.08.025
2.
Lanfranco
,
A. R.
,
Castellanos
,
A. E.
,
Desai
,
J. P.
, and
Meyers
,
W. C.
,
2004
, “
Robotic Surgery: A Current Perspective
,”
Ann. Surg.
,
239
(
1
), pp.
14
21
.10.1097/01.sla.0000103020.19595.7d
3.
Gomes
,
P.
,
2011
, “
Surgical Robotics: Reviewing the Past, Analysing the Present, Imagining the Future
,”
Rob. Comput.-Integr. Manuf.
,
27
(
2
), pp.
261
266
.10.1016/j.rcim.2010.06.009
4.
Swanström
,
L. L.
,
Khajanchee
,
Y.
, and
Abbas
,
M. A.
,
2008
, “
Natural Orifice Transluminal Endoscopic Surgery: The Future of Gastrointestinal Surgery
,”
Permanente J.
,
12
(
2
), pp.
42
47
.
5.
Chamberlain
,
R.
and
Sakpal
,
S.
,
2009
, “
A Comprehensive Review of Single-Incision Laparoscopic Surgery (SILS) and Natural Orifice Transluminal Endoscopic Surgery (NOTES) Techniques for Cholecystectomy
,”
J. Gastrointest. Surg.
,
13
(
9
), pp.
1733
1740
.10.1007/s11605-009-0902-y
6.
Khatait
,
J. P.
,
Brouwer
,
D. M.
,
Aarts
,
R. G. K. M.
, and
Herder
,
J. L.
,
2013
, “
Modeling of a Flexible Instrument to Study Its Sliding Behavior Inside a Curved Endoscope
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031002
.10.1115/1.4007539
7.
Jonker
,
J. B.
and
Meijaard
,
J. P.
,
1990
, “
SPACAR—Computer Program for Dynamic Analysis of Flexible Spatial Mechanisms and Manipulators
,”
Multibody Systems Handbook
,
Springer-Verlag
,
Berlin
, pp.
123
143
.
8.
Jonker
,
J. B.
and
Meijaard
,
J. P.
,
2012
, “
Deformation Modes and Dual Stress Resultants of Spatial Beam Elements in Large Deflection Multibody System Analyses
,”
Proceedings of the 2nd Joint International Conference on Multibody System Dynamics
, pp.
1
10
.
9.
Meijaard
,
J. P.
,
1996
, “
Validation of Flexible Beam Elements in Dynamics Programs
,”
Nonlinear Dyn.
,
9
, pp.
21
36
.10.1007/BF01833291
10.
Shampine
,
L. F.
and
Gordon
,
M. K.
,
1975
,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
,
Freeman
,
San Francisco
.
11.
Meijaard
,
J. P.
,
2003
, “
Application of Runge-Kutta-Rosenbrock Methods to the Analysis of Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
10
, pp.
263
288
.10.1023/A:1025990403660
12.
Meijaard
,
J. P.
,
Aarts
,
R. G. K. M.
, and
Brouwer
,
D. M.
,
2012
, “
Modelling and Simulation of the Motion of a Slender Beam in a Tube
,”
Proceedings of the 2nd Joint International Conference on Multibody System Dynamics
, pp.
1
10
.
13.
Dewey
,
B. R.
,
1988
,
Computer Graphics for Engineers
,
Harper & Row
,
New York
.
14.
Foley
,
J. D.
,
van Dam
,
A.
,
Feiner
,
S. K.
, and
Hughes
,
J. F.
,
1990
,
Computer Graphics: Principles and Practice
,
2nd ed.
,
Addison-Wesley
,
Reading, MA
.
15.
Stuart
,
I. M.
,
1961
, “
Capstan Equation for Strings With Rigidity
,”
Br. J. Appl. Phys.
,
12
(
10
), pp.
559
562
.10.1088/0508-3443/12/10/309
16.
Jung
,
J. H.
,
Pan
,
N.
, and
Kang
,
T. J.
,
2008
, “
Capstan Equation Including Bending Rigidity and Non-Linear Frictional Behavior
,”
Mech. Mach Theory
,
43
(
6
), pp.
661
675
.10.1016/j.mechmachtheory.2007.06.002
17.
ten Hoff
,
H.
,
1993
, “
Scanning Mechanisms for Intravascular Ultrasound Imaging: A Flexible Approach
,” Ph.D. thesis, Erasmus Universiteit, Rotterdam.
18.
Khatait
,
J. P.
,
Brouwer
,
D. M.
,
Soemers
,
H. M. J. R.
,
Aarts
,
R. G. K. M.
, and
Herder
,
J. L.
,
2013
, “
Design of an Experimental Set-Up to Study the Behavior of a Flexible Surgical Instrument Inside an Endoscope
,”
ASME J. Med. Dev.
,
7
(
3
), p.
031004
.10.1115/1.4024660
You do not currently have access to this content.